

DRL-2021-010845

Energy Fuels Resources (USA) Inc. 225 Union Blvd. Suite 600 Lakewood, CO, US, 80228 303 974 2140

www.energyfuels.com

August 2, 2021

Div of Waste Management and Radiation Control

AUG 06 2021

Sent VIA EXPEDITED DELIVERY

Mr. Doug Hansen
Director
Division of Waste Management and Radiation Control
Utah Department of Environmental Quality
195 North 1950 West
Salt Lake City, UT 84116

Re: Transmittal of 2nd Quarter 2021 Nitrate Monitoring Report

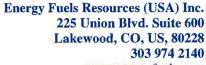
Stipulation and Consent Order Docket Number UGW12-04 White Mesa Uranium Mill

Dear Mr. Hansen:

Enclosed are two copies of the White Mesa Uranium Mill Nitrate Monitoring Report for the 2nd Quarter of 2021 as required by the Stipulation and Consent Order Docket Number UGW12-04, as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,


ENERGY FUELS RESOURCES (USA) INC.

Kathy Weinel

Quality Assurance Manager

cc:

David Frydenlund Logan Shumway Terry Slade Scott Bakken

August 2, 2021

Sent VIA EXPEDITED DELIVERY

Mr. Doug Hansen
Director
Division of Waste Management and Radiation Control
Utah Department of Environmental Quality
195 North 1950 West
Salt Lake City, UT 84116

Re: Transmittal of 2nd Quarter 2021 Nitrate Monitoring Report

Stipulation and Consent Order Docket Number UGW12-04 White Mesa Uranium Mill

Dear Mr. Hansen:

Enclosed are two copies of the White Mesa Uranium Mill Nitrate Monitoring Report for the 2nd Quarter of 2021 as required by the Stipulation and Consent Order Docket Number UGW12-04, as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

ENERGY FUELS RESOURCES (USA) INC.

Kathy Weinel

Quality Assurance Manager

cc:

David Frydenlund Logan Shumway Terry Slade Scott Bakken

White Mesa Uranium Mill Nitrate Monitoring Report

State of Utah
Stipulated Consent Agreement, December 2014
Docket No. UGW12-04

2nd Quarter (April through June) 2021

Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Boulevard, Suite 600 Lakewood, CO 80228

August 2, 2021

TABLE OF CONTENTS

1.0		ODUCTION	
2.0		INDWATER NITRATE MONITORING	
2.1	Sam	ples and Measurements Taken During the Quarter	1
	1.1	Nitrate Monitoring	
2.	1.2	Parameters Analyzed	3
2.	1.3	Groundwater Head and Level Monitoring	
2.2		pling Methodology and Equipment and Decontamination Procedures	
	2.1	Well Purging, Sampling and Depth to Groundwater	
2.	2.2	Piezometer Sampling	
2.3		d Data	
2.4		th to Groundwater Data and Water Table Contour Map	
2.5		oratory Results	
	5.1	Copy of Laboratory Results	
	5.2	Regulatory Framework	6
3.0		ITY ASSURANCE AND DATA VALIDATION	
3.1		d QC Samples	
3.2		erence to Mill Sampling SOPs	
3.3		lyte Completeness Review	
3.4		Validation	
	4.1	Field Data QA/QC Evaluation	
	4.2	Holding Time Evaluation	
	4.3	Analytical Method Checklist	
	4.4	Reporting Limit Evaluation	
	4.5	QA/QC Evaluation for Sample Duplicates	8
	4.6	Other Laboratory QA/QC	9
	4.7	Receipt Temperature Evaluation	
	4.8	Rinsate Check	
4.0		RPRETATION OF DATA	
4.1		pretation of Groundwater Levels, Gradients and Flow Directions	
	1.1	Current Site Groundwater Contour Map	
4.	1.2	Comparison of Current Groundwater Contour Map to Groundwater Conto	-
4	1.4	for Previous Quarter	
	1.4	Depth to Groundwater Measured and Groundwater Elevation	
4.2		ctiveness of Hydraulic Containment and Capture	
	2.1 2.2	Hydraulic Containment and Control	
	,	Current Nitrate and Chloride Isoconcentration Maps	
	2.3 Con 2.4	nparison of Areal Extent	2U 11
	2.4		
4.3		Interpretation of Analytical Data	
4.5	ESUI	mation of Pumped Nitrate Mass and Residual Nitrate Mass within the Plum	
5.0	LONG	TERM PUMP TEST AT TWN-02, TW4-22, TW4-24, and TW4-25	
J.U		ATIONS REPORT	>5
5.1		oduction	
5.2		ping Well Data Collection 2	
5.2	ı uili		20

5.3	Wat	er Level Measurements	26
5.4	Pum	ping Rates and Volumes	27
5.	4.1 TW	4-2	27
6.0	CORR	RECTIVE ACTION REPORT	27
6.1	Asse	essment of Previous Quarter's Corrective Actions	27
7.0	CONC	CLUSIONS AND RECOMMENDATIONS	27
8.0	ELEC	TRONIC DATA FILES AND FORMAT	32
9.0	SIGNA	ATURE AND CERTIFICATION	33
		LIST OF TABLES	
Table 1	1	Summary of Well Sampling and Constituents for the Period	
Table 2	2	Nitrate Mass Removal Per Well Per Quarter	
Table 3	3	Nitrate Well Pumping Rates and Volumes	
Table 4	1	Quarterly Calculation of Nitrate Mass Removed and Total Volume of W Pumped	ater
Table 5	5	Nitrate Data over Time for MW-30, MW-31, MW-5, and MW-11	
Table 6	5	Slug Test Results	
Table 7	7	Pre-Pumping Saturated Thickness	
Table 8	3	Pre-Pumping Hydraulic Gradients and Flow Calculations	
Table 9)	Recalculated Background Flow	

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Kriged Current Quarter Groundwater Contour Map and Weekly, Monthly and Quarterly Depth to Water Data
- Tab D Kriged Previous Quarter Groundwater Contour Map
- Tab E Hydrographs of Groundwater Elevations over Time for Nitrate Monitoring Wells
- Tab F Depths to Groundwater and Elevations over Time for Nitrate Monitoring Wells
- Tab G Laboratory Analytical Reports
- Tab H Quality Assurance and Data Validation Tables
 - H-1 Field Data QA/QC Evaluation
 - H-2 Holding Time Evaluation
 - H-3 Analytical Method Check
 - H-4 Reporting Limit Evaluation
 - H-5 QA/QC Evaluation for Sample Duplicates
 - H-6 QC Control limits for Analysis and Blanks
 - H-7 Receipt Temperature Evaluation
 - H-8 Rinsate Evaluation
- Tab I Kriged Current Quarter Nitrate and Chloride Isoconcentration Maps
- Tab J Analyte Concentration Data Over Time
- Tab K Nitrate and Chloride Concentration Trend Graphs
- Tab L CSV Transmittal Letter
- Tab M Residual Mass Estimate Analysis Figure

ACRONYM LIST

AWAL American West Analytical Laboratory

CA Consent Agreement CAP Corrective Action Plan

CIR Contamination Investigation Report

DIFB Deionized Field Blanks

DWMRC Utah Division of Waste Management and Radiation Control

DRC Utah Division of Radiation Control EFRI Energy Fuels Resources (USA) Inc.

ft amsl feet above mean sea level

GWDP Groundwater Discharge Permit

LCS Laboratory Control Spike

MS Matrix Spike

MSD Matrix Spike Duplicate QA Quality Assurance

QAP Groundwater Monitoring Quality Assurance Plan

QC Quality Control

RPD Relative Percent Difference SCO Stipulated Consent Order SOPs Standard Operating Procedures

UDEQ Utah Department of Environmental Quality

VOC Volatile Organic Compound

1.0 INTRODUCTION

The Utah Department of Environmental Quality ("UDEQ") Division of Waste Management and Radiation Control ("DWMRC") noted in a Request dated September 30, 2008 (the "Request"), for a Voluntary Plan and Schedule to Investigate and Remediate Nitrate Contamination at the White Mesa Uranium Mill (the "Mill") (the "Plan"), that nitrate levels have exceeded the State water quality standard of 10 mg/L in certain monitoring wells. As a result of the Request, Energy Fuels Resources (USA) Inc. ("EFRI") entered into a Stipulated Consent Agreement with the Utah Water Quality Board in January 2009 which directed the preparation of a Nitrate Contamination Investigation Report ("CIR"). A subsequent letter dated December 1, 2009, among other things, recommended that EFRI also address elevated chloride concentrations in the CIR. The Stipulated Consent Agreement was amended in August 2011. Under the amended Consent Agreement ("CA"), EFRI submitted a Corrective Action Plan ("CAP"), pursuant to the requirements of the Utah Groundwater Quality Protection Rules [UAC R317-6-6.15(C - E)] on November 29, 2011 and revised versions of the CAP on February 27, 2012 and May 7, 2012. On December 12, 2012, DWMRC signed the Stipulation and Consent Order ("SCO"), Docket Number UGW12-04, which approved the EFRI CAP, dated May 7, 2012. The SCO ordered EFRI to fully implement all elements of the May 7, 2012 CAP.

Based on the schedule included in the CAP and as delineated and approved by the SCO, the activities associated with the implementation of the CAP began in January 2013. The reporting requirements specified in the CAP and SCO are included in this quarterly nitrate report.

This is the Quarterly Nitrate Monitoring Report, as required under the SCO, State of Utah Docket No. UGW12-04 for the second quarter of 2021. This report meets the requirements of the SCO, State of UDEQ Docket No. UGW12-04 and is the document which covers nitrate corrective action and monitoring activities during the second quarter of 2021.

2.0 GROUNDWATER NITRATE MONITORING

2.1 Samples and Measurements Taken During the Quarter

A map showing the location of all groundwater monitoring wells, piezometers, existing wells, temporary chloroform contaminant investigation wells and temporary nitrate investigation wells is attached under Tab A. Nitrate samples and measurements taken during this reporting period are discussed in the remainder of this section.

2.1.1 Nitrate Monitoring

Quarterly sampling for nitrate monitoring parameters was performed in the following wells:

TWN-1	TWN-21
TWN-2	TW4-22*
TWN-3	TW4-24*
TWN-4	TW4-25*
TWN-7	Piezometer 1
TWN-18	Piezometer 2
TWN-20	Piezometer 3A**

As discussed in Section 2.1.2 the analytical constituents required by the CAP are inorganic chloride and nitrate+nitrite as N (referred to as nitrate in this document)

* Wells TW4-22, TW4-24, TW4-25 are chloroform investigation wells (wells installed and sampled primarily for the chloroform investigation) and are sampled as part of the chloroform program. The analytical suite for these three wells includes nitrate, chloride and a select list of Volatile Organic Compounds ("VOCs") as specified in the chloroform program. These three wells are included here because they are being pumped as part of the remediation of the nitrate contamination as required by the SCO and the CAP. The nitrate and chloride data are included in this report as well as in the chloroform program quarterly report. The VOC data for these three wells will be reported in the chloroform quarterly monitoring report only.

** Piezometer 3 was abandoned and replaced with Piezometer 3A in March 2016.

The December 12, 2012 SCO approved the CAP, which specified the cessation of sampling in TWN-5, TWN-6, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-14, TWN-15, TWN-16, TWN-17, and TWN-19. The CAP and SCO also approved the abandonment of TWN-5, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-15, and TWN-17 within 1 year of the SCO approval. These wells were abandoned in accordance with the DWMRC-approved Well Abandonment Procedure on July 31, 2013. Wells TWN-6, TWN-14, TWN-16, and TWN-19 have been maintained for depth to groundwater monitoring only, as noted in the CAP.

Table 1 provides an overview of all locations sampled during the current period, along with the date samples were collected from each location, and the date(s) upon which analytical data were received from the contract laboratory. Table 1 also identifies rinsate samples collected, as well as sample numbers associated with any required duplicates.

As indicated in Table 1, nitrate monitoring was performed in the nitrate monitoring wells, chloroform wells TW4-22, TW4-24, TW4-25 and Piezometers 1, 2, and 3A. Analytical data for all of the above-listed wells, and the piezometers, are included in Tab G.

Nitrate and chloride are also monitored in all of the Mill's groundwater monitoring wells and chloroform investigation wells. Data from those wells for this quarter are incorporated in certain maps and figures in this report but are discussed in their respective programmatic reports.

2.1.2 Parameters Analyzed

Locations sampled during this reporting period were analyzed for the following constituents:

- Inorganic Chloride
- Nitrate plus Nitrite as Nitrogen (referred to herein as nitrate)

Use of analytical methods consistent with the requirements found in the White Mesa Mill Groundwater Quality Assurance Plan, ("QAP") Revision 7.6, dated August 22, 2019 was confirmed for all analytes, as discussed later in this report.

2.1.3 Groundwater Head and Level Monitoring

Depth to groundwater was measured in the following wells and/or piezometers, pursuant to Part I.E.3 of the Groundwater Discharge Permit ("GWDP"):

- The quarterly groundwater compliance monitoring wells
- Existing well MW-4 and all of the temporary chloroform investigation wells
- Piezometers P-1, P-2, P-3, P-4 and P-5
- MW-20, MW-22, and MW-34
- The DR piezometers that were installed during the Southwest Hydrogeologic Investigation
- Nitrate wells TWN-1, TWN-2, TWN-3, TWN-4, TWN-6, TWN-7, TWN-14, TWN-16, TWN-18, TWN-19, TWN-20 and TWN-21

In addition to the above, depth to water measurements are routinely observed in conjunction with sampling events for all wells sampled during quarterly and accelerated efforts, regardless of the sampling purpose.

All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement dates in the summary sheet under Tab C. Field data sheets for groundwater measurements are also provided in Tab C.

Weekly and monthly depth to groundwater measurements were taken in the chloroform pumping wells MW-4, MW-26, TW4-1, TW4-2, TW4-11, TW4-19, TW4-4, TW4-21, TW4-37, TW4-39, TW4-40, TW4-41, and the nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2.

In addition, monthly water level measurements were taken in non-pumping wells MW-27, MW-30, MW-31, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18 as required by the CAP.

2.2 Sampling Methodology and Equipment and Decontamination Procedures

The QAP provides a detailed presentation of procedures utilized for groundwater sampling activities under the GWDP.

The sampling methodology, equipment and decontamination procedures that were performed for the nitrate contaminant investigation, as summarized below, are consistent with the QAP.

2.2.1 Well Purging, Sampling and Depth to Groundwater

A list of the wells in order of increasing nitrate contamination is generated quarterly. The order for purging is thus established. The list is included with the Field Data Worksheets under Tab B. Mill personnel start purging with all the nondetect wells and then move to the wells with detectable nitrate concentrations, progressing from the wells having the lowest nitrate contamination to wells with the highest nitrate contamination.

Before leaving the Mill office, the pump and hose are decontaminated using the cleaning agents described in Attachment 2-2 of the QAP. Rinsate blanks are collected at a frequency of one rinsate per 20 field samples.

Purging is completed to remove stagnant water from the casing and to assure that representative samples of formation water are collected for analysis. There are three purging strategies specified in the QAP that are used to remove stagnant water from the casing during groundwater sampling at the Mill. The three strategies are as follows:

- 1. Purging three well casing volumes with a single measurement of field parameters
- 2. Purging two casing volumes with stable field parameters (within 10% Relative Percent Difference ["RPD"])
- 3. Purging a well to dryness and stability (within 10% RPD) of a limited list of field parameters after recovery.

Mill personnel proceed to the first well, which is the well with the lowest concentration (i.e. non-detect) of nitrate based on the previous quarter's sampling results. Well depth measurements are taken and the one casing volume is calculated. The purging strategy that will be used for the well is determined at this time based on the depth to water measurement and the previous production of the well. The Grundfos pump (a 6 to 10 gallon per minute [gpm] pump) is then lowered to the appropriate depth in the well and purging is started. At the first well, the purge rate is measured for the purging event by using a calibrated 5 gallon bucket. After the evacuation of the well has been completed, the well is sampled when possible, and the pump is removed from the well and the process is repeated at each well location moving from the least contaminated to most contaminated well. If sample collection is not possible due to the well being purged dry, a sample is collected after recovery using a disposable bailer and as described in Attachment 2-3 of the QAP. Sample collection follows the procedures described in Attachment 2-4 of the QAP.

After the samples have been collected for a particular well, the samples are placed into a cooler that contains ice. The well is then recapped and Mill personnel proceed to the next well. If a bailer has been used it is disposed of.

Decontamination of non-dedicated equipment, using the reagents in Attachment 2-2 of the QAP, is performed between each sample location, and at the beginning of each sampling day, in addition to the pre-event decontamination described above.

2.2.2 Piezometer Sampling

Samples are collected from Piezometers 1, 2 and 3A, if possible. Samples are collected from piezometers using a disposable bailer after one set of field measurements have been collected. Due to the difficulty in obtaining samples from the piezometers, the purging protocols set out in the QAP are not followed.

After samples are collected, the bailer is disposed of and samples are placed into a cooler containing ice for sample preservation and transit to the Mill's contract analytical laboratory, American West Analytical Laboratories ("AWAL").

2.3 Field Data

Attached under Tab B are copies of all Field Data Worksheets that were completed during the quarter for the nitrate investigation monitoring wells and piezometers identified in Section 2.1.1 and Table 1.

2.4 Depth to Groundwater Data and Water Table Contour Map

Depth-to-groundwater measurements that were utilized for groundwater contours are included on the Quarterly Depth to Water Sheet at Tab C of this Report along with the kriged groundwater contour map for the current quarter generated from this data. All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement dates in the summary sheet under Tab C. A copy of the kriged groundwater contour map generated from the previous quarter's data is provided under Tab D.

2.5 Laboratory Results

2.5.1 Copy of Laboratory Results

The analytical results were provided by AWAL. Table 1 lists the dates when analytical results were reported to the Quality Assurance ("QA") Manager for each well or other sample.

Analytical results for the samples collected for this quarter's nitrate investigation and a limited list of chloroform investigation nitrate and chloride results are provided under Tab G of this Report. Also included under Tab G are the results of analyses for duplicate samples and rinsate samples for this sampling effort, as identified in Table 1. See the Groundwater Monitoring Report and Chloroform Monitoring Report for this quarter for nitrate and chloroform analytical results for the groundwater monitoring wells and chloroform investigation wells not listed in Table 1.

2.5.2 Regulatory Framework

As discussed in Section 1.0 above, the Request, Plan, and CA each triggered a series of actions on EFRI's part. Potential surficial sources of nitrate and chloride have been described in the December 30, 2009 CIR and additional investigations into potential sources were completed and discussed with DWMRC in 2011. Pursuant to the CA, the CAP was submitted to the Director of the Division Waste Management and Radiation Control (the "Director") on May 7, 2012. The CAP describes activities associated with the nitrate in groundwater. The CAP was approved by the Director on December 12, 2012. This quarterly report documents the monitoring consistent with the program described in the CAP.

3.0 QUALITY ASSURANCE AND DATA VALIDATION

EFRI's QA Manager performed a QA/Quality Control ("QC") review to confirm compliance of the monitoring program with the requirements of the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and QC review of laboratory data methods and data. Identification of field QC samples collected and analyzed is provided in Section 3.1. Discussion of adherence to Mill sampling Standard Operating Procedures ("SOPs") is provided in Section 3.2. Analytical completeness review results are provided in Section 3.3. The steps and tests applied to check field data QA/QC, holding times, receipt temperature and laboratory data QA/QC are discussed in Sections 3.4.1 through 3.4.7 below.

The analytical laboratory has provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference certification and reporting protocol. The Analytical Laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of Analytical Results, follow the analytical results under Tab G. Results of the review of the laboratory QA/QC information are provided under Tab H and discussed in Section 3.4, below.

3.1 Field QC Samples

The following QC samples were generated by Mill personnel and submitted to the analytical laboratory in order to assess the quality of data resulting from the field sampling program.

Field QC samples for the nitrate investigation program consist of one field duplicate sample for each 20 samples, DI Field Blanks ("DIFB"), and equipment rinsate samples.

During the quarter, one duplicate sample was collected as indicated in Table 1. The duplicate was sent blind to the analytical laboratory and analyzed for the same parameters as the nitrate wells.

One rinsate blank sample was collected as indicated on Table 1. Rinsate samples are labeled with the name of the subsequently purged well with a terminal letter "R" added (e.g. TWN-7R).

The field QC sample results are included with the routine analyses under Tab G.

3.2 Adherence to Mill Sampling SOPs

The QA Manager review of Mill Personnel's adherence to the existing SOPs, confirmed that the QA/QC requirements established in the QAP and Chloroform QAP were met.

3.3 Analyte Completeness Review

All analyses required by the GWDP for nitrate monitoring for the period were performed.

3.4 Data Validation

The QAP and GWDP identify the data validation steps and data QC checks required for the nitrate monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a holding time evaluation, an analytical method check, a reporting limit evaluation, a QC evaluation of sample duplicates, a QC evaluation of control limits for analysis and blanks, a receipt temperature evaluation, and a rinsate evaluation. Because no VOCs are analyzed for the nitrate contamination investigation, no trip blanks are required in the sampling program. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab H.

3.4.1 Field Data QA/QC Evaluation

The QA Manager performs a review of all field recorded parameters to assess their adherence with QAP requirements. The assessment involved review of two sources of information: the Field Data Sheets and the Quarterly Depth to Water summary sheet. Review of the Field Data Sheets addresses well purging volumes and stability of five parameters: conductance, pH, temperature, redox potential, turbidity, and dissolved oxygen ("DO"). Review of the Depth to Water data confirms that all depth measurements used for development of groundwater contour maps were conducted within a five-day period of each other. The results of this quarter's review are provided under Tab H.

Based upon the review of the field data sheets, field work was completed in compliance with the QAP purging and field measurement requirements. A summary of the purging techniques employed and field measurements taken is described below:

Purging Two Casing Volumes with Stable Field Parameters (within 10% RPD)

Wells TWN-01, TWN-04, and TWN-18 were sampled after two casing volumes were removed. Field parameters pH, specific conductivity, turbidity, water temperature, DO, and redox potential were measured during purging. All field parameters for this requirement were stable within 10% RPD.

Purging a Well to Dryness and Stability of a Limited List of Field Parameters

Wells TWN-03, TWN-07, TWN-20, and TWN-21 were purged to dryness before two casing volumes were evacuated. After well recovery, one set of measurements for the field parameters of pH, specific conductivity, and water temperature only were taken; the samples were collected,

and another set of measurements for pH, specific conductivity, and water temperature were taken. Stabilization of pH, conductivity and temperature are required within 10% RPD under the QAP. All field parameters for this requirement were stable within 10% RPD.

Continuously Pumped Wells

Wells TWN-02, TW4-22, TW4-24, and TW4-25 are continuously pumped wells. These wells are pumped on a set schedule per the remediation plan and are considered sufficiently evacuated to immediately collect a sample. As previously noted, TW4-22, TW4-24, and TW4-25 are chloroform investigation wells and are sampled under the chloroform program. Data for nitrate and chloride are provided here for completeness purposes.

During review of the field data sheets, it was observed that sampling personnel consistently recorded depth to water to the nearest 0.01 foot.

All field parameters for all wells were within the QAP required limits, as indicated below.

The field data collected during the quarter were in compliance with QAP requirements.

3.4.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided in Tab H. All samples were received and analyzed within the required holding time.

3.4.3 Analytical Method Checklist

All analytical methods reported by the laboratory were checked against the required methods enumerated in the QAP. Analytical method checks are provided in Tab H. All methods were consistent with the requirements of the QAP.

3.4.4 Reporting Limit Evaluation

All analytical method reporting limits ("RLs") reported by the laboratory were checked against the reporting limits enumerated in the QAP. Reporting Limit Checks are provided in Tab H. All analytes were measured and reported to the required reporting limits, with the exception of several samples that had increased reporting limits due to matrix interference or required dilution due to the sample concentration. However, in all of those cases the analytical results were greater than the reporting limit used.

3.4.5 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that RPDs will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results are less than 5 times the required detection limit. This standard is based on the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for duplicate pairs for all analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits.

However, data will be considered noncompliant only when the results are greater than 5 times the required detection limit and the RPD is greater than 20%.

All duplicate results were within 20% RPD for the quarterly samples. The duplicate results are provided under Tab H.

3.4.6 Other Laboratory QA/QC

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate Analytical Laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's QA Manager rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specific required limits, or that the case narrative sufficiently explains any deviation from these limits. Results of this quantitative check are provided in Tab H.

The lab QA/QC results met these specified acceptance limits.

The QAP Section 8.1.2 requires that a Matrix Spike/Matrix Spike Duplicate ("MS/MSD") pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze an MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with the laboratory established acceptance limits. The QAP does not require this level of review, and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSDs recoveries and the associated RPDs for the samples were within acceptable laboratory limits except as indicated in Tab H. The data recoveries and RPDs which are outside the laboratory established acceptance limits do not affect the quality or usability of the data because the recoveries and RPDs above or below the acceptance limits are indicative of matrix interference most likely caused by other constituents in the samples. Matrix interferences are applicable to the individual sample results only. The requirement in the QAP to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the QAP.

The information from the Laboratory QA/QC Summary Reports indicates that the Laboratory Control Sample recoveries were acceptable, which indicate that the analytical system was operating properly.

The QAP Section 8.1.2 requires that each analytical batch shall be accompanied by a reagent blank. All analytical batches routinely contain a blank, which is a laboratory-grade water blank

sample made and carried through all analytical steps. For the Mill samples, a method blank is prepared for all analytical methods. The information from the Laboratory QA/QC Summary Reports indicates that the method blanks did not contain detections of any target analytes above the Reporting Limit.

3.4.7 Receipt Temperature Evaluation

Chain of Custody sheets were reviewed to confirm compliance with the QAP requirement in QAP Table 1 that samples be received at 6°C or lower. Sample temperatures checks are provided in Tab H. All samples were received within the required temperature limit.

3.4.8 Rinsate Check

Rinsate checks are provided in Tab H. A comparison of the rinsate blank sample concentration levels to the QAP requirements – that rinsate sample concentrations be one order of magnitude lower than that of the actual well – indicated that all of the rinsate blank analytes met this criterion. All rinsate and DIFB blank samples were non-detect for the quarter.

4.0 INTERPRETATION OF DATA

4.1 Interpretation of Groundwater Levels, Gradients and Flow Directions.

4.1.1 Current Site Groundwater Contour Map

As stated above, a listing of groundwater level readings for the current quarter (shown as depth to groundwater in feet) is included under Tab C. The data from this tab has been interpreted (interpolated by kriging) and plotted in a water table contour map, provided under the same tab. The contour map is based on the current quarter's data for all wells.

The water level contour maps indicate that perched water flow ranges from generally southwesterly beneath the Mill site and tailings cells to generally southerly along the eastern and western margins of White Mesa south of the tailings management system. Perched water mounding associated with the wildlife ponds is still evident and locally changes the generally southerly perched water flow patterns. For example, northeast of the Mill site, mounding associated with formerly used wildlife ponds disrupts the generally southwesterly flow pattern, to the extent that locally northwesterly flow occurs near MW-19 and PIEZ-1. The impact of the mounding associated with the northern ponds, to which water has not been delivered since March 2012, is diminishing and is expected to continue to diminish as the mound decays due to reduced recharge. The perched groundwater mound associated with the southern wildlife pond is also diminishing due to reduced recharge at that location.

Not only has recharge from the wildlife ponds impacted perched water elevations and flow directions at the site, but the cessation of water delivery to the northern ponds, which are generally upgradient of the nitrate and chloroform plumes at the site, resulted in changing conditions that were expected to impact constituent concentrations and migration rates within the plumes. Specifically, past recharge from the ponds helped limit many constituent concentrations within the plumes by dilution while the associated groundwater mounding increased hydraulic gradients and contributed to plume migration. Since use of the northern ponds was discontinued

in March, 2012, increases in constituent concentrations in many wells, and decreases in hydraulic gradients within the plumes, are attributable to reduced recharge and the decay of the associated groundwater mound. EFRI and its consultants anticipated these changes and discussed these and other potential effects during discussions with DWMRC in March 2012 and May 2013.

The impacts associated with cessation of water delivery to the northern ponds were expected to propagate downgradient (south and southwest) over time. Wells close to the ponds were generally expected to be impacted sooner than wells farther downgradient of the ponds. Therefore, constituent concentrations were generally expected to increase in downgradient wells close to the ponds before increases were detected in wells farther downgradient of the ponds. Although such increases were anticipated to result from reduced dilution, the magnitude and timing of the increases were anticipated to be and have been difficult to predict due to the complex permeability distribution at the site and factors such as pumping and the rate of decay of the groundwater mound. Because of these complicating factors, some wells completed in higher permeability materials were expected to be impacted sooner than other wells completed in lower permeability materials even though the wells completed in lower permeability materials were closer to the ponds.

In general, nitrate concentrations within and adjacent to the nitrate plume appear to have been impacted to a lesser extent than chloroform and nitrate concentrations within and in the vicinity of the chloroform plume. This behavior is reasonable considering that the chloroform plume is generally more directly downgradient of and more hydraulically connected (via higher permeability materials) to the wildlife ponds.

Localized increases in concentrations of constituents such as nitrate and chloride within and near the nitrate plume may occur even when the nitrate plume is under control based on the Nitrate CAP requirements. Ongoing mechanisms that can be expected to increase the concentrations of nitrate and chloride locally as a result of reduced wildlife pond recharge include but are not limited to:

- 1) Reduced dilution the mixing of low constituent concentration pond recharge into existing perched groundwater will be reduced over time.
- 2) Reduced saturated thicknesses dewatering of higher permeability zones receiving primarily low constituent concentration pond water will result in wells intercepting the zones receiving a smaller proportion of the low constituent concentration water.

The combined impact of the above two mechanisms was anticipated to be more evident at chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20 (now abandoned); nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2; and non-pumped wells adjacent to the pumped wells. Impacts were also expected to occur over time at wells subsequently added to the chloroform pumping network: TW4-1, TW4-2, TW4-11, TW4-21 and TW4-37 (added during 2015); TW4-39 (added during the fourth quarter of 2016); TW4-41 (added during the second quarter of 2018); and TW4-40 (added during the second quarter of 2019). The overall impact was expected to be generally higher constituent concentrations in these wells over time until mass reduction resulting from pumping and natural attenuation eventually reduces concentrations. Short-term changes in concentrations at pumping wells and wells adjacent to pumping wells are also expected to result from changes in pumping conditions.

In addition to changes in the flow regime caused by wildlife pond recharge, perched flow directions are locally influenced by operation of the chloroform and nitrate pumping wells. Well-defined cones of depression were typically evident in the vicinity of all chloroform pumping wells except TW4-4 and TW4-37, which began pumping in the first quarter of 2010 and the second quarter of 2015, respectively. The third quarter of 2018 was the first quarter that a well-defined cone of depression was associated with TW4-4, primarily the result of pumping at adjacent well TW4-41.

The lack of well-defined capture associated with chloroform pumping well TW4-4 was consistent prior to the third quarter of 2018, even though pumping since the first quarter of 2010 has depressed the water table in the vicinity of this well. The lack of a well-defined cone of depression near TW4-4 likely resulted from 1) variable permeability conditions in the vicinity of TW4-4, and 2) persistent relatively low water levels at adjacent well TW4-14.

Pumping of nitrate wells TW4-22, TW4-24, TW4-25, and TWN-2 began during the first quarter of 2013. Water level patterns near these wells are expected to be influenced by the presence of and the decay of the groundwater mound associated with the northern wildlife ponds, and by the historically relatively low water level elevation at TWN-7. Although positioned up- to crossgradient of the nitrate pumping wells, TWN-7 is also typically downgradient of TWN-3 and the northern (upgradient) extremity of the nitrate plume. Since 2012, water levels in TWN-7 have risen while water levels in nearby wells have generally dropped due to pumping and the decay of the northern groundwater mound. These factors have reduced water level differences between TWN-7 and nearby wells.

Capture associated with nitrate pumping is expected to continue to increase over time as water levels decline due to pumping and to cessation of water delivery to the northern wildlife ponds. Interaction between nitrate and chloroform pumping is expected to enhance the capture of the nitrate pumping system. The long-term interaction between the nitrate and chloroform pumping systems is evolving, and changes will be reflected in data collected during routine monitoring.

As discussed above, variable permeability conditions are one likely reason for the prior lack of a well-defined cone of depression near chloroform pumping well TW4-4. Changes in water levels at wells immediately south and southeast (downgradient) of TW4-4 resulting from TW4-4 pumping were expected to be muted because TW4-4 is located at a transition from relatively high to relatively low permeability conditions south and southeast of TW4-4. As will be discussed below, the permeability of the perched zone at TW4-6, TW4-26, TW4-29, TW4-30, TW4-31, TW4-33, TW4-34, and TW4-35 is one to two orders of magnitude lower than at TW4-4, and the permeability at TW4-27 is approximately three orders of magnitude lower than at TW4-4.

Detecting water level drawdowns in wells immediately south and southeast of TW4-4 resulting from TW4-4 pumping has also been complicated by a general, long-term increase in water levels in this area that has been attributable to past wildlife pond recharge. Between the fourth quarter of 2007 and the fourth quarter of 2009 (just prior to the start of TW4-4 pumping), water levels at TW4-4 and TW4-6 increased by nearly 2.7 and 2.9 feet at rates of approximately 1.2 feet/year and 1.3 feet/year, respectively. However, between the start of pumping at TW4-4 (first quarter of

2010) and the fourth quarter of 2013, the rate of increase in water level at TW4-6 was reduced to less than 0.5 feet/year suggesting that TW4-6 is within the hydraulic influence of TW4-4.

Since the fourth quarter of 2013, water levels in most wells currently within the chloroform plume south of TW4-4 (TW4-26, TW4-29, TW4-33 and TW4-40 [installed in the first quarter of 2018]) have been trending generally downward, as has the water level in TW4-6 (located just outside the plume again this quarter). This downward trend is attributable to both reduced wildlife pond recharge and pumping. Although water levels at some of the wells marginal to the chloroform plume such as TW4-14, TW4-27 and TW4-31 were generally increasing until about the first quarter of 2018, these water levels now appear to be relatively stable. Water level trends at TW4-30, which was incorporated into the chloroform plume during the fourth quarter of 2020, have been similar to those at TW4-14, TW4-27 and TW4-31.

These spatially variable water level trends likely result from pumping conditions, the permeability distribution, and distance from the wildlife ponds. Wells that are relatively hydraulically isolated (due to completion in lower permeability materials or due to intervening lower permeability materials) and that are more distant from pumping wells and the wildlife ponds, are expected to respond more slowly to pumping and reduced recharge than wells that are less hydraulically isolated and are closer to pumping wells and the wildlife ponds. Wells that are more hydraulically isolated will also respond more slowly to changes in pumping.

The previous lack of a well-defined cone of depression associated with TW4-4 was also influenced by the persistent, relatively low water level at non-pumping well TW4-14, located east of TW4-4 and TW4-6. Although water level differences among these three wells had diminished, the water level at TW4-14 was typically lower than the water level at TW4-6 and several feet lower than the water level at TW4-4 even though TW4-4 has been pumping since 2010. However, since the first quarter of 2018, as a result of pumping at TW4-41 (adjacent to TW4-4), and declining water levels at TW4-6, the water level at TW4-14 was typically higher than the water levels at both TW4-4 and TW4-6. During the current quarter the water level at TW4-14 (approximately 5535.4 feet above mean sea level ["ft amsl"]) is more than 5 \frac{1}{2} feet higher than the water level at TW4-6 (approximately 5529.7 ft amsl), and is more than 7 feet higher than the water level at TW4-4 (approximately 5528.1 ft. amsl).

The static water levels at wells TW4-14 and downgradient well TW4-27 (installed south of TW4-14 in the fourth quarter of 2011) were similar (within 1 to 2 feet) until the third quarter of 2014; both appeared anomalously low. Prior to the installation of TW4-27, the persistently low water level at TW4-14 was considered anomalous because it appeared to be downgradient of all three wells TW4-4, TW4-6, and TW4-26, yet chloroform had not been detected at TW4-14. Chloroform had apparently migrated from TW4-4 to TW4-6 and from TW4-6 to TW4-26. This suggested that TW4-26 was actually downgradient of TW4-6, and TW4-6 was actually downgradient of TW4-4, regardless of the flow direction implied by the relatively low water level at TW4-14. The water level at TW4-26 (5527.8 feet amsl) is, however, lower than water levels at adjacent wells TW4-6 (5529.7 feet amsl) and TW4-23 (5531.7 feet amsl), as shown in the detail water level map under Tab C.

Hydraulic tests indicate that the permeability at TW4-27 is an order of magnitude lower than at TW4-6 and three orders of magnitude lower than at TW4-4 (see Hydro Geo Chem, Inc. [HGC],

September 20, 2010: Hydraulic Testing of TW4-4, TW4-6, and TW4-26, White Mesa Uranium Mill, July 2010; and HGC, November 28, 2011: Installation, Hydraulic Testing, and Perched Zone Hydrogeology of Perched Monitoring Well TW4-27, White Mesa Uranium Mill Near Blanding, Utah). Past similarity of water levels at TW4-14 and TW4-27, and the low permeability estimate at TW4-27, suggested that both wells were completed in materials having lower permeability than nearby wells. The low permeability condition likely reduced the rate of long-term water level increase at TW4-14 and TW4-27 compared to nearby wells, yielding water levels that appeared anomalously low. This behavior is consistent with hydraulic test data collected from more recently installed wells TW4-29, TW4-30, TW4-31, TW4-33, TW4-34 and TW4-35, which indicate that the permeability of these wells is one to two orders of magnitude higher than the permeability of TW4-27 (see: HGC, January 23, 2014, Contamination Investigation Report, TW4-12 and TW4-27 Areas, White Mesa Uranium Mill Near Blanding, Utah; and HGC, July 1, 2014, Installation and Hydraulic Testing of TW4-35 and TW4-36, White Mesa Uranium Mill Near Blanding, Utah [As-Built Report]). Hydraulic tests also indicate that the permeability at TW4-36 is slightly higher than but comparable to the low permeability at TW4-27, suggesting that TW4-36, TW4-14 and TW4-27 are completed in a continuous low permeability zone.

The current quarterly water level at TW4-27 (approximately 5528.9 ft. amsl) is more than 6 feet lower than the water level at TW4-14 (5535.4 ft. amsl). Increases in water level differences between TW4-14 and TW4-27 since 2013 are attributable to more rapid increases in water levels at TW4-14 compared to TW4-27. This behavior likely results primarily from: the relative positions of the wells; past water delivery to the northern wildlife ponds; and the permeability distribution. Past seepage from the ponds caused propagation of water level increases in all directions including downgradient to the south. The relative hydraulic isolation of TW4-14 and TW4-27 delayed responses at these locations. Until pumping started at TW4-41, water levels at both these wells were consistently lower than in surrounding higher permeability materials even though water levels in surrounding materials were generally decreasing due to reduced pond seepage and pumping. Although water levels at TW4-14 and TW4-27 appear to have stabilized, the previous rate of increase was higher at TW4-14 due to factors that include: closer proximity to the northern pond seepage source and a smaller thickness of low permeability materials separating TW4-14 from surrounding higher permeability materials. In addition, hydraulic gradients between TW4-14 and surrounding higher permeability materials were relatively large and were consistently directed toward TW4-14 prior to TW4-41 pumping. Slowing of the rates of water level increase at TW4-14 (since 2015) and TW4-27 (since early 2014), and relative stabilization since about the first quarter of 2018, are attributable to changes in hydraulic gradients between these wells and surrounding higher permeability materials.

In addition, water levels in this area are affected by reduced recharge at the southern wildlife pond and the decay of the associated groundwater mound. The decay of the mound is expected to contribute to changes in hydraulic gradients between the low permeability materials penetrated by TW4-14 and TW4-27 and the surrounding higher permeability materials. Because TW4-27 is closer to the southern wildlife pond than TW4-14, changes in hydraulic gradients attributable to decay of the southern groundwater mound are expected to impact TW4-27 sooner and to a greater extent than TW4-14, consistent with the lower rate of increase in water levels at TW4-27, and the earlier reduction in the rate of increase (since early 2014) as discussed above).

4.1.2 Comparison of Current Groundwater Contour Map to Groundwater Contour Map for Previous Quarter

The groundwater contour maps for the Mill site for the previous quarter, as submitted with the Nitrate Monitoring Report for the previous quarter, are attached under Tab D. A comparison of the water table contour maps for the current quarter (second quarter of 2021) to the water table contour maps for the previous quarter (first quarter of 2021) indicates the following: water level changes at the majority of site wells were small (< 1 foot); no significant changes to water level contours north of Cell 1 resulted from water level measurements at new temporary nitrate wells TWN-20 and TWN-21; and water level contours have not changed significantly except in the vicinities of many of the nitrate and chloroform pumping wells. Overall, total capture resulting from pumping is larger than last quarter's capture.

The drawdown at nitrate pumping well TW4-24 decreased by more than 2 feet this quarter. However drawdowns at chloroform pumping wells MW-26, TW4-4, TW4-21, TW4-37 and TW4-39; and nitrate pumping well TWN-2 increased by more than 2 feet this quarter. Water level changes at other nitrate and chloroform pumping wells were 2 feet or less, although both increases (decreases in drawdown) and decreases (increases in drawdown) occurred. Water level fluctuations at pumping wells typically occur in part because of fluctuations in pumping conditions just prior to and at the time the measurements are taken. The reported water level for chloroform pumping wells TW4-1, TW4-2 and TW4-11 are below the depth of the Brushy Basin contact this quarter. Although both increases and decreases in drawdown occurred in pumping wells, the overall apparent capture area of the combined pumping system is larger than last quarter.

As discussed in Section 4.1.1, pumping at chloroform well TW4-4, which began in the first quarter of 2010, depressed the water table near TW4-4, but a well-defined cone of depression was not clearly evident until the third quarter of 2018, likely due to variable permeability conditions near TW4-4 and the historic persistently low water level at adjacent well TW4-14. The expanded cone of depression associated with TW4-4 and adjacent pumping well TW4-41 since the initiation of pumping at TW4-41 in the second quarter of 2018 has contributed to southerly expansion of total pumping system capture. Southerly expansion of capture was additionally enhanced in the second quarter of 2019 quarter by the initiation of pumping at TW4-40.

Water levels at Piezometers 1 through 3A decreased by up to 0.88 feet this quarter; current and past decreases are consistent with cessation of water delivery to the northern wildlife ponds as discussed in Section 4.1.1 and the consequent continuing decay of the associated perched water mound. Reported water level decreases of approximately 0.54 and 0.49 feet, respectively, at TWN-1 and TWN-4 are also consistent with continuing decay of the northern groundwater mound. The reported water level decreases of 0.66 and 0.59 feet at Piezometers 4 and 5 likely result primarily from reduced recharge at the southern wildlife pond.

The reported water level at MW-20 decreased by nearly 3.3 feet. Water level variability at this well likely results from low permeability and variable intervals between purging/sampling and water level measurement. The reported water level decrease at MW-20 more than compensates for the reported increase last quarter.

Measurable water was not reported at DR-22. Although DR-22 is typically dry, measurable water was reported in the bottom of its casing between the second quarter of 2015 and the third quarter of 2016.

4.1.3 Hydrographs

Attached under Tab E are hydrographs showing groundwater elevation in each nitrate contaminant investigation monitor well over time. Per the CAP, nitrate wells TWN-6, TWN-14, TWN-16, and TWN-19 have been maintained for depth to groundwater monitoring only. These hydrographs are also included in Tab E.

4.1.4 Depth to Groundwater Measured and Groundwater Elevation

Attached in Tab F are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

4.2 Effectiveness of Hydraulic Containment and Capture

4.2.1 Hydraulic Containment and Control

The CAP states that hydraulic containment and control will be evaluated in part based on water level data and in part on concentrations in wells downgradient of pumping wells TW4-22 and TW4-24.

As per the CAP, the fourth quarter of 2013 was the first quarter that hydraulic capture associated with nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 was evaluated. Hydraulic containment and control based on water level data is considered successful per the CAP if the entire nitrate plume upgradient of TW4-22 and TW4-24 falls within the combined capture of the nitrate pumping wells. Capture zones based on water level contours calculated by kriging the current quarter's water level data are provided on water level contour maps included under Tab C. The nitrate capture zones are defined by the bounding stream tubes associated with nitrate pumping wells. Each bounding stream tube represents a flow line parallel to the hydraulic gradient and therefore perpendicular to the intersected water level contours. Assuming that the stream tubes do not change over time, all flow between the bounding stream tubes associated with a particular pumping well is presumed to eventually reach and be removed by that well. Capture associated with chloroform pumping wells is also included on these maps because the influence of the chloroform and nitrate pumping systems overlap.

The specific methodology for calculating the nitrate capture zones is substantially the same as that used since the fourth quarter of 2005 to calculate the capture zones for the chloroform program, as agreed to by the DWMRC and EFRI. The procedure for calculating nitrate capture zones is as follows:

1) Calculate water level contours by gridding the water level data on approximately 50-foot centers using the ordinary linear kriging method in SurferTM. Default kriging parameters are used that include a linear variogram, an isotropic data search, and all the available water level data for the quarter, including relevant seep and spring elevations.

- 2) Calculate the capture zones by hand from the kriged water level contours following the rules for flow nets:
 - From each pumping well, reverse track the stream tubes that bound the capture zone of each well,
 - maintain perpendicularity between each stream tube and the kriged water level contours.

Compared to last quarter, both increases and decreases in water levels occurred at nitrate and chloroform pumping wells, although changes in water levels in chloroform pumping wells MW-4, TW4-1, TW4-2, TW4-11, TW4-19, TW4-40 and TW4-41; and nitrate pumping wells TW4-22 and TW4-25 were less than two feet. Water level decreases occurred in chloroform pumping wells MW-26 (more than 11 feet); TW4-1 (approximately 0.03 feet); TW4-4 (approximately 5.8 feet); TW4-21 (approximately 4.1 feet); TW4-37 (nearly 4 feet); TW4-39 (approximately 3.1 feet); TW4-40 (approximately 0.7 feet) and TW4-41 (nearly 0.5 feet); and in nitrate pumping wells TW4-22 (approximately 0.07 feet); and TWN-2 (more than 10 feet). Water level increases occurred in chloroform pumping wells MW-4 (approximately 0.7 feet); TW4-2 (nearly 0.1 feet); TW4-11 (nearly 0.6 feet); TW4-19 (nearly 0.8 feet); and in nitrate pumping wells TW4-24 (approximately 3.6 feet); and TW4-25 (approximately 0.1 feet). The overall apparent combined capture area of the nitrate and chloroform pumping systems is larger than last quarter.

The capture associated with nitrate pumping wells and the eight chloroform pumping wells added since the first quarter of 2015 is expected to generally increase over time as water levels continue to decline due to pumping and to cessation of water delivery to the northern wildlife ponds. Slow development of hydraulic capture is consistent with and expected based on the relatively low permeability of the perched zone at the site. Furthermore, although the perched groundwater mound has diminished, and water levels at TWN-7 have risen, the definition of capture associated with the nitrate pumping system continues to be influenced by the remaining perched groundwater mound and the historically relatively low water level at TWN-7.

That pumping is likely sufficient to eventually capture the entire plume upgradient of TW4-22 and TW4-24 can be demonstrated by comparing the combined average pumping rates of all nitrate pumping wells for the current quarter to estimates of pre-pumping flow through the nitrate plume near the locations of TW4-22 and TW4-24. The pre-pumping flow calculation presented from the fourth quarter of 2013 through the second quarter of 2015 was assumed to represent a steady state 'background' condition that included constant recharge, hydraulic gradients, and saturated thicknesses; the calculation did not account for reduced recharge and saturated thickness caused by cessation of water delivery to the northern wildlife ponds since March, 2012. Because significant water level declines have occurred in upgradient portions of the nitrate plume due to reduced recharge, hydraulic gradients within the plume have been reduced independent of pumping. Changes related to reduced wildlife pond recharge have also resulted in reduced well productivity. Generally reduced productivities of nitrate pumping well TW4-24 and chloroform pumping well TW4-19 since the third quarter of 2014 are at least partly the result of reduced recharge.

The pre-pumping flow through the nitrate plume near TW4-22 and TW4-24 that was presented from the fourth quarter of 2013 through the second quarter of 2015 was estimated using Darcy's Law to lie within a range of approximately 1.31 gpm to 2.79 gpm. Calculations were based on an average hydraulic conductivity range of 0.15 feet per day (ft. /day) to 0.32 ft. /day (depending on

the calculation method), a pre-pumping hydraulic gradient of 0.025 feet per foot (ft. /ft.), a plume width of 1,200 feet, and a saturated thickness (at TW4-22 and TW4-24) of 56 feet. The hydraulic conductivity range was estimated by averaging the results obtained from slug test data that were collected automatically by data loggers from wells within the plume and analyzed using the KGS unconfined slug test solution available in AqtesolveTM (see Hydro Geo Chem, Inc. [HGC], August 3, 2005: Perched Monitoring Well Installation and Testing at the White Mesa Uranium Mill, April Through June 2005; HGC, March 10, 2009: Perched Nitrate Monitoring Well Installation and Hydraulic Testing, White Mesa Uranium Mill; and HGC, March 17 2009: Letter Report to David Frydenlund, Esq, regarding installation and testing of TW4-23, TW4-24, and TW4-25). These results are summarized in Table 6. Data from fourth quarter 2012 were used to estimate the pre-pumping hydraulic gradient and saturated thickness. These data are summarized in Tables 7 and 8.

The average hydraulic conductivity was estimated to lie within a range of 0.15 ft. /day to 0.32 ft. /day. Averages were calculated four ways. As shown in Table 6 arithmetic and geometric averages for wells MW-30, MW-31, TW4-22, TW4-24, TW4-25, TWN-2, and TWN-3 were calculated as 0.22 and 0.15 ft. /day, respectively. Arithmetic and geometric averages for a subset of these wells (MW-30, MW-31, TW4-22, and TW4-24) were calculated as 0.32 and 0.31 ft./day, respectively. The lowest value, 0.15 ft. /day, represented the geometric average of the hydraulic conductivity estimates for all the plume wells. The highest value, 0.32 ft. /day, represented the arithmetic average for the four plume wells having the highest hydraulic conductivity estimates (MW-30, MW-31, TW4-22, and TW4-24).

Pre-pumping hydraulic gradients were estimated at two locations; between TW4-25 and MW-31 (estimated as 0.023 ft. /ft.), and between TWN-2 and MW-30 (estimated as 0.027 ft. /ft.). These results were averaged to yield the value used in the calculation (0.025 ft. /ft.). The pre-pumping saturated thickness of 56 feet was an average of pre-pumping saturated thicknesses at TW4-22 and TW4-24.

As discussed above the hydraulic gradient and saturated thickness used in the pre-pumping calculations were assumed to represent a steady state 'background' condition that was inconsistent with the cessation of water delivery to the northern wildlife ponds, located upgradient of the nitrate plume. Hydraulic gradients and saturated thicknesses within the plume have declined since nitrate pumping began as a result of two factors: reduced recharge from the ponds, and the effects of pumping. A more representative 'background' flow condition that accounts for reduced wildlife pond recharge was presented in Attachment N (Tab N) of the third quarter 2015 Nitrate Monitoring report. The original pre-pumping 'background' flow range of 1.31 gpm to 2.79 gpm has been recalculated to range from 0.79 gpm to 1.67 gpm, as presented in Table 9. This calculation is still considered conservative because the high end of the range assumed an arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities. In addition, since the 'background' flow was recalculated, saturated thicknesses and hydraulic gradients within the plume have decreased, further reducing the rate of flow through the plume.

The cumulative volume of water removed by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 during the current quarter was approximately 182,680 gallons. This equates to an average total extraction rate of approximately 1.4 gpm over the 90 day quarter. This average

accounts for time periods when pumps were off due to insufficient water columns in the wells. The current quarter's pumping of 1.4 gpm, which is smaller than last quarter's 1.6 gpm, is near the high end of the recalculated 'background' flow range of 0.79 gpm to 1.67 gpm.

Although TW4-22, TW4-24, TW4-25, and TWN-2 are designated nitrate pumping wells, some chloroform pumping wells are also located within the nitrate plume because the northwest portion of the chloroform plume commingles with the central portion of the nitrate plume. Chloroform pumping well TW4-19 is periodically within the nitrate plume; chloroform pumping well TW4-21, since pumping began in 2015, is typically within the nitrate plume; and TW4-37 is consistently within the nitrate plume. TW4-21 was outside the plume during the second quarter of 2017; the third quarter of 2018; the first quarter of 2019; the fourth quarter of 2019; and the first quarter of 2020. TW4-19 is outside the plume this quarter. Although periodically within the nitrate plume, due to collapse, TW4-20 was abandoned during October, 2020.

Because chloroform pumping wells TW4-21 and TW4-37 were unambiguously within the nitrate plume this quarter it is appropriate to include them in estimating total pumping from the nitrate plume. Including TW4-21 and TW4-37, the volume of water removed by TW4-21, TW4-22, TW4-24, TW4-25, TW4-37, and TWN-2 this quarter is approximately 338,403 gallons or approximately 2.6 gpm, which exceeds the high end of the recalculated 'background' flow range by approximately 0.93 gpm, or a factor of approximately 1.6.

Because the arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities was used to calculate the high end of the 'background' flow range, the high end is considered less representative of actual conditions than using the geometric average conductivity of all of the plume wells. Therefore, nitrate pumping likely exceeds the actual flow through the plume by more than a factor of 1.6 as calculated above. Nitrate pumping is therefore considered adequate at the present time even with reduced productivity at TW4-24.

The CAP states that MW-5, MW-11, MW-30, and MW-31 are located downgradient of TW4-22 and TW4-24. MW-30 and MW-31 are within the plume near its downgradient edge and MW-5 and MW-11 are outside and downgradient of the plume. Per the CAP, hydraulic control based on concentration data will be considered successful if the nitrate concentrations in MW-30 and MW-31 remain stable or decline, and the nitrate concentrations in downgradient wells MW-5 and MW-11 do not exceed the 10 mg/L standard.

Table 5 presents the nitrate concentration data for MW-30, MW-31, MW-5 and MW-11, which are down-gradient of pumping wells TW4-22 and TW4-24. Based on these concentration data, the nitrate plume is under control.

The nitrate plume has not migrated downgradient to MW-5 or MW-11; nitrate at MW-11 was detected at a concentration of less than 1 mg/L; and was not detected at MW-5. Between the previous and current quarters, nitrate concentrations remained the same at MW-30 and increased at MW-31. Nitrate in MW-30 remained steady at 17.7 mg/L and nitrate in MW-31 increased from 17.1 mg/L to 18.6 mg/L. Although short-term fluctuations have occurred, nitrate concentrations in MW-30 and MW-31 have been relatively stable, demonstrating that plume migration to the south is minimal or absent.

MW-30 and MW-31 are located at the toe of the nitrate plume which has associated elevated chloride. Chloride is increasing at MW-31, as well as at MW-30, but at a lower rate (see Tab J and Tab K, discussed in Section 4.2.4). These increases are consistent with continuing downgradient migration of the elevated chloride associated with the nitrate plume. The increases in chloride and relatively stable nitrate at both wells suggest a natural attenuation process that is affecting nitrate but not chloride. A likely process that would degrade nitrate but leave chloride unaffected is reduction of nitrate by pyrite. The likelihood of this process in the perched zone is discussed in HGC, December 7 2012; Investigation of Pyrite in the Perched Zone, White Mesa Uranium Mill Site, Blanding, Utah. A more detailed discussion is presented in HGC, December 11, 2017; Nitrate Corrective Action Comprehensive Monitoring Evaluation (CACME) Report, White Mesa Uranium Mill Near Blanding, Utah.

4.2.2 Current Nitrate and Chloride Isoconcentration Maps

Included under Tab I of this Report are current nitrate and chloride iso-concentration maps for the Mill site. Nitrate iso-contours start at 5 mg/L and chloride iso-contours start at 100 mg/L because those values appear to separate the plumes from background. All nitrate and chloride data used to develop these iso-concentration maps are from the current quarter's sampling events.

4.2.3 Comparison of Areal Extent

Although the plume expanded in some areas and contracted in others, the plume area is smaller than last quarter. Specifically the northern portion of the plume boundary has contracted primarily due to the installation and sampling of TWN-20, which provides a close bounding well; and the boundary has contracted away from TW4-25 due to decreases in concentration at TW4-25 and TWN-2. Although the concentration at MW-28 increased slightly this quarter, the boundary has not shifted significantly toward MW-28. In addition, the concentration at MW-28 remains lower than the third quarter, 2020 concentration, and MW-28 remains outside the plume. Furthermore, TWN-7, which was incorporated within the plume for the first time during the second quarter of 2018, remains within the plume. TWN-7 has historically been located down-to cross-gradient of the northeastern (upgradient) extremity of the plume, but migration of the plume toward TWN-7 has been slow presumably due to the low permeability at TWN-7. New well TWN-20 bounds the plume to the west of TWN-7.

TW4-18 remained outside the plume with a concentration of approximately 4.2 mg/L. TW4-18 was encompassed by an eastward-extending 'spur' in the plume during the third quarter of 2015, similar to an occurrence during the third quarter of 2013. Changes in nitrate concentrations near TW4-18 are expected to result from changes in pumping and from the cessation of water delivery to the northern wildlife ponds. The reduction in low-nitrate recharge from the wildlife ponds appeared to be having the anticipated effect of generally increased nitrate concentrations in some wells downgradient of the ponds.

However, decreasing to relatively stable nitrate concentrations at most wells in the vicinity of TW4-18 between the first quarter of 2014 and the second quarter of 2015 after previous increases suggested that conditions in this area had stabilized. Since the second quarter of 2015, concentrations at TW4-18 exceeded 10 mg/L only once (third quarter of 2015). Over this same time period, concentrations at nearby wells TW4-3 and TW4-9 remained below 10 mg/L; concentrations at TW4-5 exceeded 10 mg/L only once (first quarter of 2016); and, until the first

quarter of 2019, concentrations at TW4-10 remained above 10 mg/L. Since the first quarter of 2019, concentrations at TW4-10 have remained below 10 mg/L.

Although increases in concentration in the area downgradient of the wildlife ponds have been anticipated as the result of reduced dilution, the magnitude and timing of the increases are difficult to predict due to the measured variations in hydraulic conductivity at the site and other factors. Nitrate in the area directly downgradient (south to south-southwest) of the northern wildlife ponds is associated with the chloroform plume, is cross-gradient of the nitrate plume as defined in the CAP, and is within the capture zone of the chloroform pumping system. Perched water flow in the area is to the southwest in the same approximate direction as the main body of the nitrate plume.

Nitrate concentrations at the downgradient edge of the plume (MW-30 and MW-31) have been relatively stable, demonstrating that nitrate plume migration to the south is minimal or absent. As discussed in Section 4.2.1, stable nitrate at MW-30 and MW-31 is consistent with a natural attenuation process affecting nitrate but not chloride, as elevated chloride associated with the nitrate plume continues to migrate downgradient.

With regard to chloroform, changes in the boundary of the chloroform plume are attributable in part to the initiation of nitrate pumping. Once nitrate pumping started, the boundary of the chloroform plume migrated to the west toward nitrate pumping well TW4-24, and then to the southwest to reincorporate chloroform monitoring wells TW4-6 and TW4-16. Concentration increases leading to the reincorporation of these wells occurred first at TW4-24, then at TW4-16 and TW4-6. Reduced recharge at the southern wildlife pond and decay of the associated groundwater mound are also expected to influence chloroform concentrations in the vicinity of TW4-6.

Subsequent contraction of the chloroform plume eastward away from TW4-24 and TW4-16 through the first quarter of 2016 is attributable in part to the start-up of additional chloroform pumping wells during the first half of 2015, and reduced productivity at TW4-24. TW4-16 is within and TW4-24 is just outside the chloroform plume this quarter. In addition, due to contraction of the plume away from TW4-6, TW4-6 has been outside the plume since the third quarter of 2018. More details regarding the chloroform data and interpretation are included in the Quarterly Chloroform Monitoring Report submitted under separate cover.

4.2.4 Nitrate and Chloride Concentration Trend Data and Graphs

Attached under Tab J is a table summarizing values for nitrate and chloride for each well over time.

Attached under Tab K are graphs showing nitrate and chloride concentration plots in each monitor well over time.

4.2.5 Interpretation of Analytical Data

Comparing the nitrate analytical results to those of the previous quarter, as summarized in the tables included under Tab J, the following observations can be made for wells within and immediately surrounding the nitrate plume:

- a) Nitrate concentrations have increased by more than 20% in the following wells compared to last quarter: MW-26, MW-27, TW4-21, TW4-22, TW4-39 and TWN-1;
- b) Nitrate concentrations have decreased by more than 20% in the following wells compared to last quarter: MW-11, TW4-19, and TW4-25;
- c) Nitrate concentrations have remained within 20% in the following wells compared to last quarter: MW-28, MW-30, MW-31, TW4-16, TW4-18, TW4-24, TW4-37, TWN-2, TWN-3, TWN-4, TWN-7 and TWN-18; and
- d) MW-25, MW-29 and MW-32 remained non-detect

As indicated, nitrate concentrations for many of the wells with detected nitrate were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. The remaining wells had changes in concentration greater than 20%. The latter includes chloroform pumping wells MW-26, TW4-19, TW4-21 and TW4-39; nitrate pumping wells TW4-22 and TW4-25; and non-pumping wells MW-11, MW-27 and TWN-1. MW-11 is located immediately downgradient (south) of the plume; MW-27 is located immediately west of the plume; and TWN-1 is located immediately east of the plume.

Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from the effects of pumping as discussed in Section 4.1.1. Because of their locations just outside (and generally downgradient) of the plume, fluctuations in concentration can also be expected at MW-11 and MW-27. Although the concentration at MW-11 increased by more than 20% last quarter, concentrations decreased below 1 mg/L this quarter. In addition, concentrations at MW-26 and TWN-1 are less than or slightly above 3 mg/L.

MW-27, located west of TWN-2; TWN-20, located west of TWN-7; and TWN-18, located north of TWN-3, bound the nitrate plume to the west and north (See Figure I-1 under Tab I). In addition, MW-28 and MW-29 bound the plume to the west; and the southernmost (downgradient) boundary of the plume remains between MW-30/MW-31 and MW-5/MW-11. Nitrate concentrations at MW-5 (adjacent to MW-11) and MW-11 have historically been low (< 1 mg/L) or non-detect for nitrate (See Table 5). The nitrate concentrations at MW-5 (non-detect) and MW-11 (< 1 mg/L) are consistent with the relative stability of the downgradient margin of the plume. MW-25, MW-26, MW-32, TW4-16, TW4-18, TW4-19, TW4-25, TWN-1 and TWN-4 bound the nitrate plume to the east.

Nitrate concentrations outside the nitrate plume are typically greater than 10 mg/L at a few locations: TW4-26 (14.2 mg/L); TW4-27 (23.8 mg/L); and TW4-28 (10.2 mg/L in the third quarter of 2019; 9.1 mg/L this quarter). In the past concentrations at TW4-10, TW4-12 and TW4-38 typically exceeded 10 mg/L. However TW4-10 dropped below 10 mg/L during the first quarter of 2019; TW4-12 dropped below 10 mg/L in the second quarter of 2019 (and is now less than 3 mg/L); and TW4-38 dropped below 10 mg/L during the first quarter of 2018. Concentrations at TW4-18 have also occasionally exceeded 10 mg/L. Each of these wells is located southeast of the nitrate plume as defined in the CAP and is separated from the plume by a well or wells where nitrate concentrations are either non-detect, or, if detected, are less than 10 mg/L. Except for TW4-26, which increased more than 20%, and TW4-12, which decreased more

than 20%, the nitrate concentrations at the above wells are within 20% of last quarter's concentrations.

Since 2010, nitrate concentrations at TW4-10 and TW4-18 have been above and below 10 mg/L Concentrations were below 10 mg/L between the first quarter of 2011 and second quarter of 2013, and mostly close to or above 10 mg/L between the second quarter of 2013 and third quarter of 2015. However, concentrations at TW4-18 have been below 10 mg/L since the third quarter of 2015 and (as discussed above) the concentration at TW4-10 dropped below 10 mg/L during the first quarter of 2019. Concentrations at nearby well TW4-5 have exceeded 10 mg/L only twice since 2010, and concentrations at nearby wells TW4-3 and TW4-9 have remained below 10 mg/L. Nitrate at TW4-5, TW4-10, and TW4-18 is associated with the chloroform plume, and is within the capture zone of the chloroform pumping system. Elevated nitrate at TW4-12, TW4-26, TW4-27, TW4-28 and TW4-38 is likely related to former cattle ranching operations at the site. Elevated nitrate at relatively recently installed well MW-38 and at MW-20 (far cross-gradient and far downgradient, respectively, of the tailings management system at the site) is also likely related to former cattle ranching operations.

Chloride concentrations are measured because elevated chloride (greater than 100 mg/L) is associated with the nitrate plume. Chloride concentrations at all sampled locations this quarter are within 20% of their respective concentrations during the previous quarter except at chloroform pumping wells MW-4, TW4-2, TW4-11, TW4-19, TW4-37, TW4-39 and TW4-40; nitrate pumping wells TW4-22, TW4-24 and TW4-25; and non-pumping TW4-32 and PIEZ-1. Concentration fluctuations at pumping wells likely result in part from the effects of pumping as discussed in Section 4.1.1.

TWN-7 (located upgradient [north] of the tailings management system) was positioned historically cross- to downgradient of the upgradient (northeastern) extremities of the commingled nitrate and chloride plumes. Recent increases in both nitrate and chloride at TWN-7, which remains incorporated into both the nitrate and chloride plumes this quarter, likely result from northwesterly migration of the elevated nitrate and chloride contained within the upgradient extremities of these commingled plumes. The change in both nitrate and chloride at TWN-7 since last quarter is less than 20%.

Piezometer PIEZ-3A was installed in the second quarter of 2016 as a replacement to piezometer PIEZ-3. The chloride concentration at piezometer PIEZ-3A (85.2 mg/L) is more than 2 times higher this quarter than the pre-abandonment first quarter 2016 concentration at PIEZ-3 (approximately 33 mg/L). The nitrate concentration at PIEZ-3A (approximately 14.4 mg/L) is also higher this quarter than the pre-abandonment first quarter 2016 PIEZ-3 concentration (approximately 2.2 mg/L).

4.3 Estimation of Pumped Nitrate Mass and Residual Nitrate Mass within the Plume

Nitrate mass removed by pumping as summarized in Table 2 includes mass removed by both chloroform and nitrate pumping wells. Table 3 shows the volume of water pumped at each well and Table 4 provides the details of the nitrate removal for each well. Mass removal calculations begin with the third quarter of 2010 because the second quarter, 2010 data were specified to be used to establish a baseline mass for the nitrate plume. As stated in the CAP, the baseline mass is

to be calculated using the second quarter, 2010 concentration and saturated thickness data "within the area of the kriged 10 mg/L plume boundary." The second quarter, 2010 data set was considered appropriate because "the second quarter, 2010 concentration peak at TWN-2 likely identifies a high concentration zone that still exists but has migrated away from the immediate vicinity of TWN-2."

As shown in Table 2, since the third quarter of 2010, a total of approximately 3,643 lb. of nitrate has been removed directly from the perched zone by pumping. Prior to the first quarter of 2013, all direct nitrate mass removal resulted from operation of chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20. During the current quarter:

- A total of approximately 91 lb. of nitrate was removed by the chloroform pumping wells and by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2.
- Of the 91 lb. removed during the current quarter, approximately 43 lb. (or 47 %) was removed by the nitrate pumping wells.

The calculated nitrate mass removed directly by pumping slightly larger than last quarter's approximately 88 lbs.

As discussed in Section 4.3.1, achievable pumping rates are expected to diminish over time as saturated thicknesses are reduced by pumping and by cessation of water delivery to the northern wildlife ponds. Attachment N (Tab N) of the third quarter 2015 Nitrate Monitoring report provides an evaluation of reduced productivity at chloroform pumping well TW4-19 and nitrate pumping well TW4-24.

Baseline mass and current quarter mass estimates (nitrate + nitrite as N) for the nitrate plume are approximately 43,700 lb. and 34,143 lbs., respectively. Mass estimates were calculated within the plume boundaries as defined by the kriged 10 mg/L isocon by 1) gridding (kriging) the nitrate concentration data on 50-foot centers; 2) calculating the volume of water in each grid cell based on the saturated thickness and assuming a porosity of 0.18; 3) calculating the mass of nitrate+nitrite as N in each cell based on the concentration and volume of water for each cell; and 4) totaling the mass of all grid cells within the 10 mg/L plume boundary. Data used in these calculations included data from wells listed in Table 3 of the CAP.

The nitrate mass estimate for the current quarter (34,143 lb.) is smaller than the mass estimate for the previous quarter (35,052 lb) by 909 lb. Since pumping began, calculated nitrate mass within the plume has generally decreased at a rate that is on average higher than would be expected based on direct mass removal by pumping. Changes in the quarterly mass estimates are expected to result from several factors, primarily 1) nitrate mass removed directly by pumping, 2) natural attenuation of nitrate, and 3) re-distribution of nitrate within the plume and changes in saturated thicknesses.

Nitrate mass removed by pumping and natural attenuation (expected to result primarily from pyrite oxidation/nitrate reduction) act to lower both nitrate mass and concentrations within the plume. Both mechanisms are expected to continuously reduce both nitrate mass and concentrations within the plume. Reductions in saturated thickness that are not accompanied by increases in concentration will also reduce nitrate mass within the plume.

However, redistribution of nitrate within the plume is expected to result in both increases and decreases in concentrations at wells within the plume and therefore increases and decreases in mass estimates based on those concentrations, thus generating 'noise' in the mass estimates. In addition, because the sum of sampling and analytical error is typically about 20%, changes in the mass estimates from quarter to quarter of up to 20% could result from typical sampling and analytical error alone.

Furthermore, redistribution of nitrate within the plume and changes in saturated thicknesses will be impacted by changes in pumping and in background conditions such as the decay of the perched water mound associated with the northern wildlife ponds. Cessation of water delivery to the northern wildlife ponds is expected to result in reduced saturated thicknesses and reduced dilution, which in turn is expected to result in increased nitrate concentrations in many wells.

Because of quarter to quarter variations in factors that impact the mass estimates, only longer-term analyses of the mass estimates that minimize the impacts of 'noise' can provide useful information on plume mass trends. Over the long term, nitrate mass estimates are expected to trend downward as a result of direct removal by pumping and through natural attenuation.

The decrease in the mass estimate this quarter is attributable primarily to the apparent contraction of the northern portion of the plume due to the sampling of new bounding well TWN-20; and decreases in concentrations at TW4-25 and TWN-2. The plume boundary has not shifted significantly with respect to bounding well MW-28.

As specified in the CAP, once eight quarters of data were collected (starting with the first quarter of 2013), a regression trend line was to be applied to the quarterly mass estimates and evaluated. The trend line was to be updated quarterly and reevaluated as additional quarters of data were collected. The evaluation was to determine whether the mass estimates were increasing, decreasing, or stable.

As the fourth quarter of 2014 constituted the eighth quarter as specified in the CAP, the mass estimates were plotted, and a regression line was fitted to the data and evaluated. The regression line has been updated each quarter since the fourth quarter of 2014 as shown in Figure M.1 of Tab M. The fitted line shows a decreasing trend in the mass estimates.

5.0 LONG TERM PUMP TEST AT TWN-02, TW4-22, TW4-24, and TW4-25 OPERATIONS REPORT

5.1 Introduction

Beginning in January 2013, EFRI began long term pumping of TW4-22, TW4-24, TW4-25, and TWN-02 as required by the Nitrate CAP, dated May 7, 2012 and the SCO dated December 12, 2012.

In addition, as a part of the investigation of chloroform contamination at the Mill site, EFRI has been conducting a Long Term Pump Test on MW-4, TW4-19, MW-26, and TW4-20, and, since January 31, 2010, TW4-4. In anticipation of the final approval of the GCAP, beginning on

January 14, 2015, EFRI began long term pumping of TW4-1, TW4-2, and TW4-11 and began long term pumping of TW4-21 and TW4-37 on June 9, 2015. In addition, EFRI is pumping TW4-39, TW4-40 and TW4-41. The purpose of the test is to serve as an interim action that will remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation. TW4-20 collapsed in August of 2020 and was abandoned in October 2020.

Because wells MW-4, TW4-19, MW-26, TW4-4, TW4-01, TW4-02, TW4-11, TW4-21, TW4-37, TW4-39, TW4-40 and TW4-41 are pumping wells that may impact the removal of nitrate, they are included in this report and any nitrate removal realized as part of this pumping is calculated and included in the quarterly reports.

The following information documents the operational activities during the quarter.

5.2 Pumping Well Data Collection

Data collected during the quarter included the following:

- Measurement of water levels at MW-4, TW4-19, MW-26, and, commencing regularly on March 1, 2010, TW4-4, on a weekly basis,
- Measurement of water levels weekly at TW4-22, TW4-24, TW4-25, and TWN-02 commencing January 28, 2013,
- Measurement of water levels weekly at TW4-01, TW4-02, and TW4-11 commencing on January 14, 2015,
- Measurement of water levels weekly at TW4-21 and TW4-37 commencing on June 9, 2015, and on a monthly basis selected temporary wells and permanent monitoring well,
- Measurement of water levels weekly at TW4-39 commencing on December 7, 2016.
- Measurement of water levels weekly at TW4-41 commencing on April 3, 2018,
- Measurement of water levels weekly at TW4-40 commencing on May 13, 2019.
- Measurement of pumping history, including:
 - pumping rates
 - total pumped volume
 - operational and non-operational periods.
- Periodic sampling of pumped water for chloroform and nitrate/nitrite analysis and other constituents

5.3 Water Level Measurements

Beginning August 16, 2003, water level measurements from chloroform pumping wells MW-4, MW-26, and TW4-19 were conducted weekly. From commencement of pumping and regularly after March 1, 2010 water levels in these chloroform pumping wells have been measured weekly. From commencement of pumping in January 2013, water levels in wells TW4-22, TW4-24, TW4-25, and TWN-02 have been measured weekly. From the commencement of pumping in December 2016, water levels in TW4-39 have been measured; from the commencement of pumping in April 2018 water levels in TW4-41 have been measured and from the

commencement of pumping in May 2019 water levels in TW4-40 have been measured weekly. Copies of the weekly Depth to Water monitoring sheets for MW-4, MW-26, TW4-19, TW4-4, TW4-22, TW4-24, TW4-25, TWN-02, TW4-01, TW4-02, TW4-11, TW4-21, TW4-37, TW4-39, TW4-40, and TW4-41 are included under Tab C.

Monthly depth to water monitoring is required for all of the chloroform contaminant investigation wells and non-pumping wells MW-27, MW-30, MW-31, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18. Copies of the monthly depth to Water monitoring sheets are included under Tab C.

5.4 Pumping Rates and Volumes

The pumping wells do not pump continuously, but are on a delay device. The wells purge for a set amount of time and then shut off to allow the well to recharge. Water from the pumping wells is either transferred to the Cell 1 evaporation pond or is used in the Mill process.

The pumped wells are fitted with a flow meter which records the volume of water pumped from the well in gallons. The flow meter readings shown in Tab C are used to calculate the gallons of water pumped from the wells each quarter as required by Section 7.2.2 of the CAP. The average pumping rates and quarterly volumes for each of the pumping wells are shown in Table 3. The cumulative volume of water pumped from each of the wells is shown in Table 4.

Specific operational problems observed with the well or pumping equipment which occurred during the quarter are noted for each well below.

Unless specifically noted below, no operational problems were observed with the well or pumping equipment during the quarter.

5.4.1 TW4-2

During the routine check on June 28, 2021, the pump TW4-2 malfunctioned. All ancillary systems and controllers were checked and it was determined that the pump was malfunctioning and could not be repaired. The pump was removed and replaced within 24 hours of discovery and as such no notifications were necessary.

6.0 CORRECTIVE ACTION REPORT

There are no corrective actions required during the current monitoring period.

6.1 Assessment of Previous Quarter's Corrective Actions

There were no corrective actions required during the previous quarter's monitoring period.

7.0 CONCLUSIONS AND RECOMMENDATIONS

As per the CAP, the current quarter is the thirty first quarter that hydraulic capture associated with nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 was evaluated. While the apparent combined capture of the nitrate and chloroform pumping systems has expanded slightly in some areas and contracted in others, the overall capture area this quarter is larger than last quarter's.

Capture associated with nitrate pumping wells is expected to increase over time as water levels decline due to pumping and due to cessation of water delivery to the northern wildlife ponds. Nitrate capture is enhanced by the interaction of the nitrate pumping system with the chloroform pumping system. Chloroform pumping wells located within or adjacent to the nitrate plume not only increase overall capture, but account for much of the nitrate mass removed each quarter. The long term interaction between nitrate and chloroform pumping systems is evolving as revealed by data collected as part of routine monitoring. Slow development of hydraulic capture by the nitrate pumping system was expected and is consistent with the relatively low permeability of the perched zone at the site.

The capture associated with the nitrate pumping system has been impacted by the perched groundwater mound and historically relatively low water levels at TWN-7. Although the perched groundwater mound has diminished, and water levels at TWN-7 have risen, definition of capture associated with the nitrate pumping system continues to be influenced by the remaining perched groundwater mound and the relatively low water level at TWN-7.

Nitrate pumping is likely sufficient to eventually capture the entire nitrate plume upgradient of TW4-22 and TW4-24 even with reduced productivity at TW4-24 since the third quarter of 2014. Hydraulic gradients and saturated thicknesses within the plume have declined since nitrate pumping began as a result of two factors: reduced recharge from the ponds, and nitrate pumping. A more representative 'background' flow condition that accounts for reduced wildlife pond recharge was presented in Attachment N (Tab N) of the third quarter, 2015 Nitrate Monitoring report. The original pre-pumping 'background' flow range of 1.31 gpm to 2.79 gpm was recalculated to range from 0.79 gpm to 1.67 gpm. This calculation is still considered conservative because the high end of the calculated range assumed an arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities. In addition, since the 'background' flow was recalculated, saturated thicknesses and hydraulic gradients within the plume have decreased, further reducing the rate of flow through the plume.

The current nitrate pumping of approximately 1.4 gpm, based on water removed by TW4-22, TW4-24, TW4-25, and TWN-2, is near the high end of the recalculated 'background' flow range of 0.79 gpm to 1.67 gpm.

If water removed from the nitrate plume by chloroform pumping wells TW4-21 and TW4-37 is included, the current nitrate pumping of approximately 2.6 gpm exceeds the high end of the recalculated 'background' range by approximately 0.93 gpm, or a factor of approximately 1.6. Including TW4-37 is appropriate because this well has been within the nitrate plume consistently since initiation of pumping in 2015. Including TW4-21 is also appropriate because this well is again within the plume this quarter.

In addition, because the arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities was used in recalculating the high end of the 'background' flow range, the high end is considered less representative of actual conditions than using the geometric average conductivity of all of the plume wells. Therefore, nitrate pumping likely exceeds flow through the plume by a factor greater than 1.6 times the high end of the recalculated range. Nitrate pumping is considered adequate at the present time even with reduced productivity at TW4-24. Furthermore, as the groundwater mound associated with former water delivery to the northern wildlife ponds continues to decay, hydraulic gradients and saturated thicknesses will continue to decrease, and 'background' flow will be proportionally reduced, thereby reducing the amount of pumping needed.

This quarter nitrate concentrations at many of the wells within and adjacent to the nitrate plume were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Changes in concentration (both increases and decreases) greater than 20% occurred in chloroform pumping wells MW-26, TW4-19, TW4-21 and TW4-39; nitrate pumping wells TW4-22 and TW4-25; and non-pumping wells MW-11, MW-27 and TWN-1. MW-11 is located immediately downgradient (south) of the plume; MW-27 is located immediately west of the plume; and TWN-1 is located immediately east of the plume.

Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from the effects of pumping as discussed in Section 4.1.1. Because of their locations just outside and generally downgradient of the plume, fluctuations in concentration can also be expected at MW-11 and MW-27. Although the concentration at MW-11 increased by more than 20% last quarter, concentrations decreased below 1 mg/L this quarter. In addition, concentrations at MW-26 and TWN-1 are less than or slightly above 3 mg/L.

Concentrations at MW-25, MW-29 and MW-32 remained non-detect. As discussed in Section 4.2.3, the area of the nitrate plume is smaller than last quarter; the northern portion of the plume boundary has contracted primarily due to the installation and sampling of TWN-20, which provides a close bounding well; and the boundary has contracted away from TW4-25 due to decreases in concentration at TW4-25 and TWN-2. Although the concentration at MW-28 increased slightly this quarter, the plume boundary has not shifted significantly toward MW-28. In addition, the concentration at MW-28 remains lower than the third quarter, 2020 concentration, and MW-28 remains outside the plume.

MW-27, located west of TWN-2; TWN-20, located west of TWN-7; and TWN-18, located north of TWN-3, bound the nitrate plume to the west and north. TWN-20 was installed west of TWN-7 because TWN-7 no longer bounded the plume to the west (see Figure I-1 under Tab I). In addition, the southernmost (downgradient) boundary of the plume remains between MW-30/MW-31 and MW-5/MW-11. Nitrate concentrations at MW-5 (adjacent to MW-11) and MW-11 have historically been low (< 1 mg/L) or non-detect for nitrate (See Table 5). The nitrate concentration at MW-11 of less than 1 mg/L is consistent with the relative stability of the downgradient margin of the plume. MW-25, MW-26, MW-32, TW4-16, TW4-18, TW4-25, TWN-1 and TWN-4 bound the nitrate plume to the east.

Although short-term fluctuations have occurred, nitrate concentrations in MW-30 and MW-31 have been relatively stable, demonstrating that plume migration is minimal or absent. Nitrate in MW-30 remained at 17.7 mg/L and nitrate in MW-31 increased from 17.1mg/L to 18.6 mg/L. Based on the concentration data at MW-5, MW-11, MW-30, and MW-31, the nitrate plume is under control.

Chloride is increasing at MW-31 and at MW-30, but at a lower rate. These increases are consistent with continuing downgradient migration of the elevated chloride associated with the nitrate plume. The increasing chloride and relatively stable nitrate at both wells suggests a natural attenuation process that is affecting nitrate but not chloride. A likely process that would degrade nitrate but leave chloride unaffected is reduction of nitrate by pyrite. The likelihood of this process in the perched zone is discussed in HGC, December 7 2012; Investigation of Pyrite in the Perched Zone, White Mesa Uranium Mill Site, Blanding, Utah. A more detailed discussion is presented in HGC, December 11, 2017; Nitrate Corrective Action Comprehensive Monitoring Evaluation (CACME) Report, White Mesa Uranium Mill Near Blanding, Utah.

Nitrate mass within the plume boundary has been calculated on a quarterly basis beginning with the first quarter of 2013. Calculated mass within the plume is expected to be impacted by factors that include pumping, natural attenuation, redistribution of nitrate within the plume, and changes in saturated thickness.

Nitrate mass removal by pumping and natural attenuation (expected to result primarily from pyrite oxidation/nitrate reduction) act to lower nitrate mass within the plume. Reductions in saturated thickness that are not accompanied by increases in concentration will also reduce nitrate mass within the plume.

Changes resulting from redistribution of nitrate within the plume are expected to result in both increases and decreases in concentrations at wells within the plume and therefore increases and decreases in mass estimates based on those concentrations, thus generating 'noise' in the mass estimates. Furthermore, because the sum of sampling and analytical error is typically about 20%, changes in the mass estimates from quarter to quarter of up to 20% could result from typical sampling and analytical error alone. Longer-term analyses of the mass estimates that minimize the impact of these quarter to quarter variations are expected to provide useful information on plume mass trends. Over the long term, nitrate mass estimates are expected to trend downward as a result of direct removal by pumping and through natural attenuation.

As specified in the CAP, once eight quarters of data were collected (starting with the first quarter of 2013), a regression trend line was to be applied to the quarterly mass estimates and evaluated. The trend line was to be updated quarterly and reevaluated as additional quarters of data were collected. As the fourth quarter of 2014 constituted the eighth quarter as specified in the CAP, the mass estimates were plotted, and a regression line was fitted to the data and evaluated. The regression line was updated this quarter as shown in Figure M.1 of Tab M. The fitted line shows a decreasing trend in the mass estimates.

During the current quarter, a total of approximately 91 lb. of nitrate was removed by the chloroform pumping wells and by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-

2. Of the 91 lb. removed during the current quarter, approximately 43 lb. (or 47 %) was removed by the nitrate pumping wells.

The baseline nitrate (nitrate+nitrite as N) plume mass calculated as specified in the CAP (based on second quarter, 2010 data) was approximately 43,700 lb. The mass estimate for the current quarter (34,143 lb.) is smaller than the mass estimate for the previous quarter (35,052 lb) by 909 lb. or approximately 3 %. The current quarter's estimate is smaller than the baseline estimate by approximately 9,557 lb. The quarterly difference is attributable primarily to the apparent contraction of the northern portion of the plume due to the installation and sampling of TWN-20, which provides a close bounding well; and to decreases in concentration at TW4-25 and TWN-2. Although the concentration at bounding well MW-28 increased slightly this quarter, the plume boundary has not shifted significantly with respect to MW-28.

Nitrate concentrations outside the nitrate plume are typically greater than 10 mg/L at a few locations: TW4-26 (14.2 mg/L); TW4-27 (23.8 mg/L); and TW4-28 (10.2 mg/L in the third quarter of 2019; 9.1 mg/L this quarter). In the past concentrations at TW4-10, TW4-12 and TW4-38 typically exceeded 10 mg/L. However TW4-10 dropped below 10 mg/L during the first quarter of 2019; TW4-12 dropped below 10 mg/L in the second quarter of 2019 (and is now less than 3 mg/L); and TW4-38 dropped below 10 mg/L during the first quarter of 2018. Each of these wells is located southeast of the nitrate plume as defined in the CAP and is separated from the plume by a well or wells where nitrate concentrations are either non-detect, or, if detected, are less than 10 mg/L. Except for TW4-26 which increased more than 20%, and TW4-12, which decreased more than 20%, the nitrate concentrations at the above wells are within 20% of last quarter's concentrations.

Since 2010, nitrate concentrations at TW4-10 and TW4-18 have been above and below 10 mg/L. Concentrations were below 10 mg/L between the first quarter of 2011 and second quarter of 2013, and mostly close to or above 10 mg/L between the second quarter of 2013 and third quarter of 2015. However, concentrations at TW4-18 have been below 10 mg/L since the third quarter of 2015 and (as discussed above) the concentration at TW4-10 dropped below 10 mg/L during the first quarter of 2019. Concentrations at nearby well TW4-5 have exceeded 10 mg/L only twice since 2010, and concentrations at nearby wells TW4-3 and TW4-9 have remained below 10 mg/L. Nitrate at TW4-5, TW4-10, and TW4-18 is associated with the chloroform plume, and is within the capture zone of the chloroform pumping system. Elevated nitrate at TW4-12, TW4-26, TW4-27, TW4-28 and TW4-38 is likely related to former cattle ranching operations at the site. Elevated nitrate at relatively recently installed well MW-38 and at MW-20 (far cross-gradient and far downgradient, respectively, of the tailings management system at the site) is also likely related to former cattle ranching operations.

Increases in both nitrate and chloride concentrations at wells near the northern wildlife ponds (for example TW4-18) were anticipated as a result of reduced dilution caused by cessation of water delivery to the northern wildlife ponds. However, decreasing nitrate concentrations at TW4-10 and TW4-18 from the first through third quarters of 2014 after previously increasing trends (interrupted in the first quarter of 2014) suggested that conditions in this area had stabilized. The temporary increase in nitrate concentration at TW4-18 in the third quarter of 2015 and the generally increased nitrate at TW4-5 and TW4-10 during the three quarters following the second quarter of 2015 suggested the continuing impact of reduced wildlife pond recharge on

downgradient wells. However, since the first quarter of 2016, concentrations at TW4-5, TW4-10 and TW4-18 have been stable to decreasing.

EFRI and its consultants have raised the issues and potential effects associated with cessation of water delivery to the northern wildlife ponds in March, 2012 during discussions with DWMRC in March 2012 and May 2013. While past recharge from the northern wildlife ponds has helped limit many constituent concentrations within the chloroform and nitrate plumes by dilution, the associated groundwater mounding has increased hydraulic gradients and contributed to plume migration. Since use of the northern wildlife ponds ceased in March 2012, the reduction in recharge and decay of the associated groundwater mound was expected to increase many constituent concentrations within the plumes while reducing hydraulic gradients and rates of plume migration. Reduced recharge and decay of the groundwater mound associated with the southern wildlife pond is also expected to have an impact on water levels and concentrations at wells within and marginal to the downgradient (southern) extremity of the chloroform plume.

The net impact of reduced wildlife pond recharge is expected to be beneficial even though temporarily higher concentrations were also expected until continued mass reduction via pumping and natural attenuation ultimately reduces concentrations. Temporary increases in nitrate concentrations are judged less important than reduced nitrate migration rates. The actual impacts of reduced recharge on concentrations and migration rates will be defined by continued monitoring.

Nitrate mass removal from the perched zone was increased substantially by the start-up of nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 during the first quarter of 2013. Continued operation of these wells is therefore recommended. Pumping these wells, regardless of any short term fluctuations in concentrations detected at the wells, helps to reduce downgradient nitrate migration by removing nitrate mass and reducing average hydraulic gradients, thereby allowing natural attenuation to be more effective. Continued operation of the nitrate pumping system is expected to eventually reduce nitrate concentrations within the plume and to further reduce or halt downgradient nitrate migration.

8.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Director an electronic copy of all laboratory results for groundwater quality monitoring conducted under the nitrate contaminant investigation during the quarter, in Comma Separated Values ("CSV") format. A copy of the transmittal e-mail is included under Tab L.

9.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc.

Energy Fuels Resources (USA) Inc.

By:

Scott A. Bakken

Vice President, Regulatory Affairs

33

Certification:

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Scott Bakken

Vice President, Regulatory Affairs Energy Fuels Resources (USA) Inc. Tables

Table 1
Summary of Well Sampling and Constituents for the Period

THE PERSON NAMED IN		nd Constituents for the Period
Well	Sample Collection Date	Date of Lab Report
Piezometer 01	5/27/2021	6/23/2021
Piezometer 02	5/27/2021	6/23/2021
Piezometer 03A	5/27/2021	6/23/2021
TWN-01	5/25/2021	6/23/2021
TWN-02	5/25/2021	6/23/2021
TWN-03	5/27/2021	6/23/2021
TWN-04	5/25/2021	6/23/2021
TWN-07	5/27/2021	6/23/2021
TWN-18	5/25/2021	6/23/2021
TWN-18R	5/25/2021	6/23/2021
TWN-20	6/3/2021	6/23/2021
TWN-21	6/3/2021	6/23/2021
TW4-22	6/9/2021	6/28/2021
TW4-24	6/9/2021	6/28/2021
TW4-25	6/9/2021	6/28/2021
TWN-60	5/25/2021	6/23/2021
TW4-60	6/9/2021	6/28/2021
TWN-65	5/25/2021	6/23/2021

Note: All wells were sampled for Nitrate and Chloride.

Multiple dates shown for a single laboratory depict resubmission dates for the data. Resubmissions were required to correct reporting errors.

Dates in Italics are the original laboratory submission dates.

TWN-60 is a DI Field Blank.

TWN-65 is a duplicate of TWN-18

TW4-60 is the chloroform program DI Field Blank.

Continuously pumped well:

Table 2 Nitrate Mass Removal Per Well Per Ouarter

						1	villate ivi	ass Remo	Jvai Fer	well Fer	Quarter							
Quarter	MW-4 (lbs.)	MW-26 (lbs.)	TW4-19 (lbs.)	TW4-20 (lbs.)	TW4-4 (lbs.)	TW4-22 (lbs.)	TW4-24 (lbs.)	TW4-25 (lbs.)	TWN-02 (lbs.)	TW4-01 (lbs.)	TW4-02 (lbs.)	TW4-11 (lbs.)	TW4-21 (lbs.)	TW4-37 (lbs.)	TW4-39 (lbs.)	TW4-40 (lbs.)	TW4-41 (lbs.)	Qtr. Totals (lbs.)
Q3 2010	3.20	0.3	5.8	1.7	4.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	15.69
Q4 2010	3.76	0.4	17.3	1.4	5.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	27.97
Q1 2011	2.93	0.2	64.5	1.4	4.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	73.30
Q2 2011	3.51	0.1	15.9	2.7	4.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	27.01
Q3 2011	3.49	0.5	3.5	3.9	5.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	16.82
Q4 2011	3.82	0.8	6.2	2.5	6.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.71
Q1 2012	3.62	0.4	0.7	5.0	6.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	15.86
Q2 2012	3.72	0.6	3.4	2.1	5.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	15.03
Q3 2012	3.82	0.5	3.6	2.0	4.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	14.67
Q4 2012	3.16	0.4	5.4	1.8	4.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	14.92
Q1 2013	2.51	0.4	14.1	1.4	3.6	8.1	43.4	7.5	14.8	NA	95.73							
Q2 2013	2.51	0.4	5.6	1.6	3.4	10.7	37.1	6.4	23.9	NA	91.71							
Q3 2013	2.97	0.4	48.4	1.4	3.8	6.3	72.8	6.9	33.4	NA	176.53							
Q4 2013	3.08	0.3	15.8	1.6	3.9	9.4	75.2	6.4	46.3	NA	162.07							
Q1 2014	2.74	0.4	4.1	1.2	3.6	11.2	60.4	2.3	17.2	NA	103.14							
Q2 2014	2.45	0.3	3.3	0.9	3.0	9.5	63.4	1.3	17.8	NA	101.87							
Q3 2014	2.31	0.1	4.1	0.6	3.1	8.5	56.2	1.6	16.4	NA	92.99							
Q4 2014	2.67	0.2	7.8	1.0	3.8	11.0	53.2	0.9	28.0	NA	108.57							
Q1 2015	3.67	0.5	4.3	1.3	2.4	12.7	26.7	8.6	19.2	1.45	1.07	0.72	NA	NA	NA	NA	NA	82.61
Q2 2015	1.28	0.2	0.6	0.9	3.6	9.1	16.6	0.9	21.4	1.22	0.79	0.37	3.4	8.6	NA	NA	NA	68.86
Q3 2015	3.58	0.3	11.3	1.4	3.5	13.3	14.0	1.7	20.2	1.24	0.68	0.29	15.4	31.9	NA	NA	NA	118.63
Q4 2015	3.68	0.2	10.0	0.8	3.1	11.1	26.6	1.7	17.5	0.3	0.9	0.3	16.1	32.3	NA	NA	NA	124.50
Q1 2016	3.91	0.23	15.28	1.23	3.21	6.36	24.30	0.81	34.33	0.02	0.93	0.22	15.29	26.45	NA	NA	NA	132.55
Q2 2016	3.66	0.21	1.31	1.48	3.36	12.92	13.17	1.01	19.24	0.02	1.15	0.25	14.46	27.76	NA	NA	NA	99.98
Q3 2016	3.30	0.22	9.08	1.15	3.02	11.33	14.86	1.56	12.47	0.72	0.59	0.22	15.20	27.42	NA	NA	NA	101.12
Q4 2016	3.48	0.18	8.76	1.23	1.79	12.14	26.49	1.02	12.14	0.10	1.00	0.23	14.68	22.20	0.62	NA	NA	106.06
Q1 2017	3.19	0.17	10.23	1.36	1.35	14.02	34.16	0.02	10.35	0.63	0.79	0.20	8.02	26.16	5.54	NA	NA	116.19
Q2 2017	2.94	0.20	0.22	1.02	1.37	13.99	17.58	0.83	8.88	0.87	0.77	0.19	4.85	24.26	2.15	NA	NA	80.12
Q3 2017	3.65	0.36	1.05	1.31	1.29	13.56	18.55	1.27	9.31	0.73	0.82	0.18	18.24	20.81	2.23	NA	NA	93.37
Q4 2017	4.67	0.23	0.34	1.06	1.32	15.89	28.04	1.26	10.37	0.68	0.47	0.17	17.84	22.35	1.51	NA	NA	106.21
Q1 2018	3.92	0.35	7.89	1.13	1.18	12.47	36.31	2.18	7.09	0.51	0.40	0.17	15.54	21.22	1.65	NA	NA	111.99
Q2 2018	3.94	0.20	0.46	1.16	0.96	14.07	14.89	1.12	7.22	0.40	0.47	0.16	13.73	19.96	1.38	NA	4.02	84.14
Q3 2018	3.63	0.60	2.25	0.85	0.78	9.82	14.99	0.75	6.48	0.35	0.60	0.13	0.22	16.42	1.69	NA	2.30	61.86
Q4 2018	3.81	0.39	0.21	1.04	0.77	15.27	32.56	0.61	6.30	0.38	0.45	0.14	15.43	17.38	1.97	NA	1.78	98.49
Q1 2019	4.71	0.41	6.38	0.82	1.01	15.69	32.04	0.48	7.10	0.40	0.53	0.15	9.25	19.49	0.85	NA	1.79	101.08
Q2 2019	4.07	0.57	7.53	1.08	1.24	16.15	14.74	0.60	16.35	0.11	0.51	0.15	15.61	16.91	2.42	2.4	1.26	101.72
Q3 2019	3.74	0.62	0.28	1.17	0.77	14.95	16.54	0.40	8.01	0.13	0.56	0.12	13.26	14.55	0.54	3.3	1.25	80.19
Q4 2019	3.59	0.18	0.44	0.68	0.78	12.02	28.83	0.60	5.17	0.30	0.40	0.12	5.55	14.20	0.41	2.6	1.08	76.97
Q1 2020	5.33	0.24	8.16	0.78	0.55	11.91	26.73	0.43	4.44	0.38	0.67	0.11	7.95	15.48	0.29	2.5	0.88	86.86
Q2 2020	4.28	0.62	1.30	6.08	0.93	12.77	20.05	0.64	4.04	0.04	0.43	0.13	14.26	15.39	1.56	2.4	0.98	85.95
Q3 2020	3.48	0.08	14.96	0.00	0.85	12.46	17.40	0.70	3.05	0.18	0.39	0.11	10.46	13.95	0.80	2.1	0.75	81.69
Q4 2020	3.52	0.87	1.33	0.00	0.85	12.38	31.15	1.18	2.57	0.33	0.28	0.08	14.56	14.69	2.75	1.7	0.93	89.15
Q1 2021	3.60	0.08	7.36	0.00	0.77	13.13	28.63	2.30	3.00	0.21	0.36	0.13	12.33	13.45	0.69	1.5	0.72	88.22

Table 2 Nitrate Mass Removal Per Well Per Quarter

							-											
Quarter	MW-4 (lbs.)	MW-26 (lbs.)	TW4-19 (lbs.)	TW4-20 (lbs.)	TW4-4 (lbs.)	TW4-22 (lbs.)	TW4-24 (lbs.)	TW4-25 (lbs.)	TWN-02 (lbs.)	TW4-01 (lbs.)	TW4-02 (lbs.)	TW4-11 (lbs.)	TW4-21 (lbs.)	TW4-37 (lbs.)	TW4-39 (lbs.)	TW4-40 (lbs.)	TW4-41 (lbs.)	Qtr. Totals (lbs.)
Q2 2021	5.04	0.20	5.10	0.00	1.01	17.06	21.78	1.08	2.62	0.05	0.39	0.12	17.43	13.00	3.29	2.1	0.82	91.09
Well Totals (pounds)	153.9	15.3	365.6	63.4	120.6	411.3	1059.4	67.1	476.5	11.7	16.4	5.1	309.0	496.2	32.3	20.6	18.5	3643.17

Table 3 Well Pumping Rates and Volumes

Pumping Well	Volume of Water Pumped	
Name	During the Quarter (gals)	Average Pump Rate (gpm)
MW-4	93252.4	4.0
MW-26	29124.1	16.1
TW4-19	151242.8	16.1
TW4-4	13425.7	16.5
TWN-2	22717.2	16.1
TW4-22	22893.3	17.0
TW4-24	54377.9	15.8
TW4-25	82692.8	10.5
TW4-01	8764.1	12.9
TW4-02	11975.9	16.1
TW4-11	1694.5	14.2
TW4-21	97157.6	16.4
TW4-37	58564.2	18.0
TW4-39	32865.2	18.0
TW4-40	66866.4	18.0
TW4-41	13168.7	6.0

Table 4
Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

		A 10 00	Property of	MW-4	92-22 E3 Tel	E VIVE	THE ROLL				MW-26			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	79859.1	4.80	4800	302266.7	1450880129	1450.9	3.20	63850.0	0.60	600	241672.3	145003350	145	0.32
Q4 2010	90042.2	5.00	5000	340809.7	1704048635	1704.0	3.76	60180.0	0.70	700	227781.3	159446910	159	0.35
Q1 2011	76247.6	4.60	4600	288597.2	1327546964	1327.5	2.93	55130.0	0.50	500	208667.1	104333525	104	0.23
Q2 2011	85849.3	4.90	4900	324939.6	1592204042	1592.2	3.51	55800.6	0.30	300	211205.3	6.34E+07	63	0.14
Q3 2011	85327.7	4.90	4900	322965.3	1582530188	1582.5	3.49	65618.0	0.90	900	248364.1	223527717	224	0.49
Q4 2011	89735.0	5.10	5100	339647.0	1732199573	1732.2	3.82	50191.3	2.00	2000	189974.1	379948141	380	0.84
Q1 2012	90376.4	4.80	4800	342074.7	1641958435	1642.0	3.62	31440.1	1.70	1700	119000.8	202301323.5	202	0.45
Q2 2012	90916.5	4.90	4900	344118.8	1686181940	1686.2	3.72	26701.2	2.50	2500	101064.1	252660294.3	253	0.56
Q3 2012	91607.0	5.00	5000	346732.5	1733662475	1733.7	3.82	25246.0	2.60	2600	95556.1	248445886	248	0.55
Q4 2012	78840.0	4.80	4800	298409.4	1432365120	1432.4	3.16	30797.0	1.46	1460	116566.6	170187301.7	170	0.38
Q1 2013	62943.7	4.78	4780	238241.9	1138796304	1138.8	2.51	22650.7	2.27	2270	85732.9	194613681.9	195	0.43
Q2 2013	71187.3	4.22	4220	269443.9	1137053387	1137.1	2.51	25343.4	2.11	2110	95924.8	202401262.6	202	0.45
Q3 2013	72898.8	4.89	4890	275922.0	1349258375	1349.3	2.97	25763.0	1.98	1980	97513.0	193075650.9	193	0.43
Q4 2013	70340.4	5.25	5250	266238.4	1397751674	1397.8	3.08	24207.6	1.38	1380	91625.8	126443557.1	126	0.28
Q1 2014	69833.8	4.70	4700	264320.9	1242308385	1242.3	2.74	23263.1	2.12	2120	88050.8	186667767	187	0.41
Q2 2014	71934.9	4.08	4080	272273.6	1110876274	1110.9	2.45	23757.5	1.42	1420	89922.1	127689435.3	128	0.28
Q3 2014	74788.2	3.70	3700	283073.3	1047371347	1047.4	2.31	24062.4	0.70	700	91076.2	63753328.8	64	0.14
Q4 2014	63093.0	5.07	5070	238807.0	1210751515	1210.8	2.67	21875.8	0.93	934	82799.9	77335109.4	77	0.17
Q1 2015	76454.3	5.75	5750	289379.5	1663932272	1663.9	3.67	24004.9	2.68	2680	90858.5	243500904.6	244	0.54
Q2 2015	60714.7	2.53	2530	229805.1	581407002.9	581.4	1.28	27804.6	0.85	845	105240.4	88928147.3	89	0.20
Q3 2015	89520.8	4.79	4790	338836.2	1623025532	1623.0	3.58	21042.0	1.75	1750	79644.0	139376947.5	139	0.31
Q4 2015	99633.4	4.43	4430	377112.4	1670608016	1670.6	3.68	19355.6	1.11	1110	73260.9	81319650.1	81	0.18
Q1 2016	90882.1	5.15	5150	343988.7	1771542055	1771.5	3.91	19150.8	1.45	1450	72485.8	105104378.1	105	0.23
Q2 2016	96540.5	4.54	4540	365405.8	1658942298	1658.9	3.66	22105.7	1.12	1120	83670.1	93710483.4	94	0.21
Q3 2016	79786.4	4.95	4950	301991.5	1494858044	1494.9	3.30	17149.5	1.57	1570	64910.9	101910046.3	102	0.22
Q4 2016	85414.0	4.88	4880	323292.0	1577664911	1577.7	3.48	18541.6	1.18	1180	70180.0	82812348.1	83	0.18
Q1 2017	76642.3	4.99	4990	290091.1	1447554616	1447.6	3.19	26107.0	0.768	768	98815.0	75889916.2	76	0.17
Q2 2017	72299.8	4.88	4880	273654.7	1335435146	1335.4	2.94	25921.8	0.922	922	98114.0	90461120.0	90	0.20
Q3 2017	95349.3	4.59	4590	360897.1	1656517691	1656.5	3.65	27489.9	1.56	1560	104049.3	162316863.5	162	0.36
Q4 2017	106679.8	5.25	5250	403783.0	2119860976	2119.9	4.67	26445.8	1.04	1040	100097.4	104101247.1	104	0.23
Q1 2018	105060.4	4.47	4470	397653.6	1777511655	1777.5	3.92	27004.7	1.57	1570	102212.8	160474079.5	160	0.35
Q2 2018	101786.2	4.64	4640	385260.8	1787609959	1787.6	3.94	26654.7	0.90	901	100888.0	90900123.6	91	0.20
Q3 2018	95480.5	4.55	4550	361393.8	1644341817.5	1644.3	3.63	25536.1	2.80	2800	96654.1	270631587.8	271	0.60
Q4 2018	102844.8	4.44	4440	389267.5	1728347833.9	1728.3	3.81	23791.3	1.96	1960	90050.1	176498138.2	176	0.39
Q1 2019	111746.9	5.05	5050	422961.9	2135957801.0	2136.0	4.71	26798.5	1.85	1850	101432.3	187649796.6	188	0.41
Q2 2019	94540.7	5.16	5160	357836.5	1846436595.4	1846.4	4.07	24050.2	2.83	2830	91030.0	257614919.8	258	0.57
Q3 2019	95517.8	4.69	4690	361534.9	1695598554.4	1695.6	3.74	24181.1	3.08	3080	91525.5	281898427.6	282	0.62
Q4 2019	99220.8	4.34	4340	375550.9	1629890816.6	1629.9	3.59	22384.8	0.977	977	84726.5	82777759.2	83	0.18
Q1 2020	102597.0	6.22	6220	388329.6	2415410391.9	2415.4	5,33	24107.0	1.17	1170	91245.0	106756644.2	107	0.24

Table 4
Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	1.9-3.1-2	85.32.10		MW-4				TO PARTY THE	R. S. A. Z.		MW-26	TO A TO	1 10 11	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	101850.7	5.04	5040	385504.9	1942944502.7	1942.9	4.28	25418.4	2.93	2930	96208.6	281891326.9	282	0.62
Q3 2020	84607.8	4.93	4930	320240.6	1578786151.6	1578.8	3.48	23663.7	0.416	416	89567.1	37259915.5	37	0.08
Q4 2020	91258.6	4.62	4620	345413.8	1595811760.6	1595.8	3.52	28934.5	3.620	3620	109517.1	396451838.7	396	0.87
Q1 2021	93486.7	4.61	4610	353847.3	1631235928.8	1631.2	3.60	27898.0	0.349	349	105593.9	36852281.6	37	0.08
Q2 2021	93252.4	6.48	6480	352960.3	2287182964.3	2287.2	5.04	29124.1	0.810	810	110234.7	89290122.0	89	0.20

Q3 2010 3818989.63 153.9 1290544.02 15.3

Table 4
Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	医一类 医原	11.5	W 30	TW4-19		St. St.			- STALLS	400	TW4-20		408.7000	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	116899.2	5.90	5900	442463.5	2610534485	2611	5.76	39098.3	5.30	5300	147987.1	784331447.2	784	1.73
Q4 2010	767970.5	2.70	2700	2906768.3	7848274525	7848	17.30	36752.5	4.60	4600	139108.2	639897777.5	640	1.41
Q1 2011	454607.9	17.00	17000	1720690.9	29251745326	29252	64.49	37187.5	4.40	4400	140754.7	619320625	619	1.37
Q2 2011	159238.9	12.00	12000	602719.2	7232630838	7233	15.95	67907.7	4.80	4800	257030.6	1233747094	1234	2.72
Q3 2011	141542.6	3.00	3000	535738.7	1607216223	1607	3.54	72311.2	6.50	6500	273697.9	1779036298	1779	3.92
Q4 2011	147647.2	5.00	5000	558844.7	2794223260	2794	6.16	72089.3	4.20	4200	272858.0	1146003602	1146	2.53
Q1 2012	148747.0	0.60	600	563007.4	337804437	338	0.74	76306.0	7.90	7900	288818.2	2281663859	2282	5.03
Q2 2012	172082.0	2.40	2400	651330.5	1563193161	1563	3.45	22956.4	11.00	11000	86890.1	955790963.1	956	2.11
Q3 2012	171345.0	2.50	2500	648540.8	1621352063	1621	3.57	22025.0	10.80	10800	83364.6	900337950	900	1.98
Q4 2012	156653.0	4.10	4100	592931.6	2431019581	2431	5.36	20114.0	11.00	11000	76131.5	837446390	837	1.85
Q1 2013	210908.0	7.99	7990	798286.8	6378311372	6378	14.06	18177.0	9.07	9070	68799.9	624015501.2	624	1.38
Q2 2013	226224.0	2.95	2950	856257.8	2525960628	2526	5.57	20252.4	9.76	9760	76655.3	748156059.8	748	1.65
Q3 2013	329460.1	17.60	17600	1247006.5	21947314022	21947	48.39	19731.0	8.65	8650	74681.8	645997872.8	646	1.42
Q4 2013	403974.0	4.70	4700	1529041.6	7186495473	7186	15.84	19280.2	9.64	9640	72975.6	703484369.5	703	1.55
Q1 2014	304851.0	1.62	1620	1153861.0	1869254877	1869	4.12	18781.6	7.56	7560	71088.4	537427971.4	537	1.18
Q2 2014	297660.0	1.34	1340	1126643.1	1509701754	1510	3.33	18462.4	5.95	5950	69880.2	415787094.8	416	0.92
Q3 2014	309742.0	1.60	1600	1172373.5	1875797552	1876	4.14	17237.9	4.30	4300	65245.5	280555441.5	281	0.62
Q4 2014	198331.0	4.72	4720	750682.8	3543222981	3543	7.81	16341.8	7.67	7670	61853.7	474417978.7	474	1.05
Q1 2015	60553.0	8.56	8560	229193.1	1961892979	1962	4.33	15744.7	9.80	9800	59593.7	584018157.1	584	1.29
Q2 2015	75102.8	0.92	916	284264.1	260385913.8	260	0.57	18754.1	5.76	5760	70984.3	408869386.6	409	0.90
Q3 2015	116503.9	11.60	11600	440967.3	5115220233	5115	11.28	17657.3	9.27	9270	66832.9	619540802.2	620	1.37
Q4 2015	112767.7	10.6	10600	426825.7	4524352892	4524	9.97	15547.4	6.23	6230	58846.9	366616243.1	367	0.81
Q1 2016	116597.0	15.7	15700	441319.6	6928718427	6929	15.28	14353.5	10.30	10300	54328.0	559578374.3	560	1.23
Q2 2016	123768.0	1.27	1270	468461.9	594946587.6	595	1.31	15818.3	11.20	11200	59872.3	670569373.6	671	1.48
Q3 2016	103609.0	10.5	10500	392160,1	4117680683	4118	9.08	12186.6	11.30	11300	46126.3	521226975.3	521	1.15
Q4 2016	104919.4	10.0	10000	397119.9	3971199290	3971	8.76	12879.6	11.40	11400	48749.3	555741860.4	556	1.23
Q1 2017	110416.7	11.1	11100	417927.2	4638992025	4639	10.23	13552.8	12.00	12000	51297.3	615568176	616	1.36
Q2 2017	109943.0	0.243	243	416134.3	101120624	101	0.22	12475.3	9.76	9760	47219.0	460857542.5	461	1.02
Q3 2017	112626.4	1.12	1120	426290.9	477445834.9	477	1.05	14556.8	10.80	10800	55097.5	595052870.4	595	1.31
Q4 2017	108891.2	0.38	377	412153.2	155381753.4	155	0.34	14271.0	8.91	8910	54015.7	481280198.9	481	1.06
Q1 2018	109856.3	8.61	8610	415806.1	3580090482	3580	7.89	14258.4	9.50	9500	53968.0	512696418	513	1.13
Q2 2018	111271.4	0.49	494	421162.2	208054151.0	208	0.46	13367.6	10.40	10400	50596.4	526202206.4	526	1.16
Q3 2018	105821.8	2.55	2550	400535.5	1021365558.2	1021	2.25	12443.6	8.14	8140	47099.0	383385763.5	383	0.85
Q4 2018	107197.4	0.233	233	405742.2	94537923.0	95	0.21	12841.1	9.72	9720	48603.6	472426637.2	472	1.04
Q1 2019	116132.8	6.58	6580	439562.6	2892322223.8	2892	6.38	14623.9	6.70	6700	55351.3	370853777.7	371	0.82
Q2 2019	100704.0	8.96	8960	381164.6	3415235174.4	3415	7.53	13439.2	9.59	9590	50867.4	487818097.5	488	1.08
Q3 2019	101026.8	0.332	332	382386.4	126952297.4	127	0.28	13787.0	10.20	10200	52183.8	532274709.0	532	1.17
Q4 2019	98806.8	0.535	535	373983.7	200081299.8	200	0.44	8317.7	9.75	9750	31482.5	306953952.3	307	0.68
Q1 2020	96857.9	10.1	10100	366607.2	3702732230.2	3703	8.16	9505.1	9.81	9810	35976.6	352930585.8	353	0.78

Table 4
Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	CONTRACTOR OF THE PARTY OF THE			TW4-19							TW4-20						
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)			
Q2 2020	136619.7	1.1	1140	517105.6	589500343.5	590	1.30	100713.8	7.23	7230	381201.6	2756087708.6	2756	6.08			
Q3 2020	154514.4	11.6	11600	584837.0	6784109246.4	6784	14.96	12476.2	Well collapsed and not sampled								
Q4 2020	144512.0	1.10	1100	546977.9	601675712.0	602	1.33		Well collapsed and not sampled								
Q1 2021	133462.3	6.61	6610	505154.8	3339073264.4	3339	7.36		Well collapsed and not sampled								
Q2 2021	151242.8	4.04	4040	572454.0	2312714151.9	2313	5.10		Well collapsed and not sampled Well collapsed and not sampled								

Q3 2010 7641607.93 365.6 1018583.08 63.4

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

		E BOOK		TW4-4	VI 15 11 11 11 11 11 11 11 11 11 11 11 11	O- 10- O-	120		BULL I	21.A	TW4-22			WAY TO S
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	76916.8	7.30	7300	291130.1	2125249642.4	2125.25	4.69	NA	NA	NA	NA	NA	NA	NA
Q4 2010	86872.1	7.10	7100	328810.9	2334557379.4	2334.56	5.15	NA	NA	NA	NA	NA	NA	NA
Q1 2011	73360.0	7.00	7000	277667.6	1943673200.0	1943.67	4.29	NA	NA	NA	NA	NA	NA	NA
Q2 2011	80334.6	7.00	7000	304066.5	2128465227.0	2128.47	4.69	NA	NA	NA	NA	NA	NA	NA
Q3 2011	97535.0	6.60	6600	369170.0	2436521835.0	2436.52	5.37	NA	NA	NA	NA	NA	NA	NA
Q4 2011	109043.5	7.00	7000	412729.6	2889107532.5	2889.11	6.37	NA	NA	NA	NA	NA	NA	NA
Q1 2012	101616.8	7.10	7100	384619.6	2730799074.8	2730.80	6.02	NA	NA	NA	NA	NA	NA	NA
Q2 2012	87759.1	7.10	7100	332168.2	2358394173.9	2358.39	5.20	NA	NA	NA	NA	NA	NA	NA
Q3 2012	80006.0	7.10	7100	302822.7	2150041241.0	2150.04	4.74	NA	NA	NA	NA	NA	NA	NA
Q4 2012	71596.0	7.00	7000	270990.9	1896936020.0	1896.94	4.18	NA	NA	NA	NA	NA	NA	NA
Q1 2013	58716.8	7.36	7360	222243.1	1635709127.7	1635.71	3.61	16677.4	58.0	58000.0	63124.0	3661189622.0	3661.2	8.07
Q2 2013	65603.4	6.30	6300	248308.9	1564345874.7	1564.35	3.45	25523.2	50.2	50200.0	96605.3	4849586662.4	4849.6	10.69
Q3 2013	63515.4	7.22	7220	240405.8	1735729796.6	1735.73	3.83	25592.9	29.7	29700.0	96869.1	2877013057.1	2877.0	6.34
Q4 2013	60233.6	7.84	7840	227984.2	1787395939.8	1787.40	3.94	24952.2	45.2	45200.0	94444.1	4268872280.4	4268.9	9.41
Q1 2014	58992.9	7.28	7280	223288.1	1625537560.9	1625.54	3.58	24532.0	54.6	54600.0	92853.6	5069807652.0	5069.8	11.18
Q2 2014	60235.3	5.91	5910	227990.6	1347424508.1	1347.42	2.97	24193.9	47.2	47200.0	91573.9	4322288622.8	4322.3	9.53
Q3 2014	69229.4	5.30	5300	262033.3	1388776378.7	1388.78	3.06	24610.9	41.5	41500.0	93152.3	3865818644.8	3865.8	8.52
Q4 2014	64422.6	7.02	7020	243839.5	1711753577.8	1711.75	3.77	23956.9	54.9	54900.0	90676.9	4978159970.9	4978.2	10.97
Q1 2015	36941.3	7.70	7700	139822.8	1076635717.9	1076.64	2.37	22046.9	69.2	69200.0	83447.5	5774568141.8	5774.6	12.73
Q2 2015	68162.8	6.33	6330	257996.2	1633115933.3	1633.12	3.60	23191.6	47.1	47100.0	87780.2	4134447702.6	4134.4	9.11
Q3 2015	64333.0	6.45	6450	243500.4	1570577612.3	1570.58	3.46	24619.9	64.7	64700.0	93186.3	6029155001.1	6029.2	13.29
Q4 2015	59235.1	6.27	6270	224204.9	1405764431.4	1405.76	3.10	23657.6	56.1	56100.0	89544.0	5023419297.6	5023.4	11.07
Q1 2016	57274.0	6.71	6710	216782.1	1454607823.9	1454.61	3.21	24517.8	31.1	31100.0	92799.9	2886076050.3	2886.1	6.36
Q2 2016	61378.0	6.56	6560	232315.7	1523991188.8	1523.99	3.36	26506.3	58.4	58400.0	100326.3	5859058577.2	5859.1	12.92
Q3 2016	50104.2	7.22	7220	189644.4	1369232546.3	1369.23	3.02	22144.1	61.3	61300.0	83815.4	5137885154.1	5137.9	11.33
Q4 2016	31656.0	6.77	6770	119818.0	811167589.2	811.17	1.79	23646.8	61.5	61500.0	89503.1	5504442987.0	5504.4	12.14
Q1 2017	23526.8	6.87	6870	89048.9	611766204.1	611.77	1.35	24066.2	69.8	69800.0	91090.6	6358121576.6	6358.1	14.02
Q2 2017	23244.9	7.06	7060	87981.9	621152542.3	621.15	1,37	23685.0	70.8	70800.0	89647.7	6347058930.0	6347.1	13.99
Q3 2017	23937.3	6.47	6470	90602.7	586199342.8	586.20	1.29	24583,2	66.1	66100.0	93047.4	6150433933.2	6150.4	13.56
Q4 2017	22900.6	6.90	6900	86678.8	598083519.9	598.08	1.32	23779.6	80.1	80100.0	90005.8	7209463458.6	7209.5	15.89
Q1 2018	23103.4	6.12	6120	87446.4	535171778.3	535.17	1.18	23982.8	62.3	62300.0	90774.9	5655276145.4	5655.3	12.47
Q2 2018	18137.0	6.34	6340	68648.5	435231775.3	435.23	0.96	23256.6	72.5	72500.0	88026.2	6381901747.5	6381.9	14.07
Q3 2018	15366.0	6.10	6100	58160.3	354777891.0	354.78	0.78	21248.7	55.4	55400.0	80426.3	4455618654.3	4455.6	9.82
Q4 2018	15420.2	6.02	6020	58365.5	351360051.1	351.36	0.77	24171.0	75.7	75700.0	91487.2	6925583689.5	6925.6	15.27
Q1 2019	16655.0	7.26	7260	63039.2	457664410.5	457.66	1.01	26149.9	71.9	71900.0	98977.4	7116473010.9	7116.5	15.69
Q2 2019	14311.9	10.4	10400	54170.5	563373631.6	563.37	1.24	23073.1	83.9	83900.0	87331.7	7327128245.7	7327.1	16.15
Q3 2019	14520.0	6.32	6320	54958.2	347335824.0	347.34	0.77	24711.7	72.5	72500.0	93533.8	6781199376.3	6781.2	14.95
Q4 2019	14399.8	6.52	6520	54503.2	355361144.4	355.36	0.78	24052.5	59.9	59900.0	91038.7	5453218878.8	5453.2	12.02
Q1 2020	14439.2	4.58	4580	54652.4	250307863.8	250.31	0.55	24746.1	57.7	57700.0	93664.0	5404412136.5	5404.4	11.91

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

			E THE	TW4-4					HI TO		TW4-22	ELS MANUEL		A DECEM
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	15347.0	7.26	7260	58088.4	421721747.7	421.72	0.93	25295.3	60.5	60500.0	95742.7	5792433985.3	5792.4	12.77
Q3 2020	14389.9	7.04	7040	54465.8	383439031.4	383.44	0.85	23050.6	64.8	64800.0	87246.5	5653574560.8	5653.6	12.46
Q4 2020	15061.5	6.77	6770	57007.8	385942653.7	385.94	0.85	22866.1	64.9	64900.0	86548.2	5616977433.7	5617.0	12.38
Q1 2021	13740.8	6.75	6750	52008.9	351060264.0	351.06	0.77	22605.6	69.6	69600.0	85562.2	5955128841.6	5955.1	13.13
Q2 2021	13425.7	9.02	9020	50816.3	458362796.0	458.36	1.01	22893.3	89.3	89300.0	86651.1	7737946846.7	7737.9	17.06

Q3 2010 2107000.70 120.6 808587.7 411.3

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

		1 (5-1)		TW4-24		S112800		William Francisco	of the local	July Vice	TW4-25	W STATE OF	13511	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	144842.6	35.9	35900	548229.2	19681429751.9	19681.4	43.39	99369.9	9.00	9000	376115.1	3385035643.5	3385.0	7.46
Q2 2013	187509.3	23.7	23700	709722.7	16820428001.9	16820.4	37.08	147310.4	5.24	5240	557569.9	2921666087.4	2921.7	6.44
Q3 2013	267703.5	32.6	32600	1013257.7	33032202568.5	33032.2	72.82	145840.9	5.69	5690	552007.8	3140924419.0	3140.9	6.92
Q4 2013	260555.3	34.6	34600	986201.8	34122582643.3	34122.6	75.23	126576.5	6.10	6100	479092.1	2922461520.3	2922.5	6.44
Q1 2014	229063.9	31.6	31600	867006.9	27397416823,4	27397.4	60.40	129979.2	2.16	2160	491971.3	1062657947.5	1062.7	2.34
Q2 2014	216984.1	35.0	35000	821284.8	28744968647.5	28745.0	63.37	124829.8	1.21	1210	472480.8	571701759.5	571.7	1.26
Q3 2014	213652.5	31.5	31500	808674.7	25473253443.8	25473.3	56.16	119663.9	1.60	1600	452927.9	724684578.4	724.7	1.60
Q4 2014	178468.7	35.7	35700	675504.0	24115493853.2	24115.5	53.17	107416.1	1.03	1030	406569.9	418767036.7	418.8	0.92
Q1 2015	92449.3	34.6	34600	349920.6	12107252777.3	12107.3	26.69	71452.4	14.40	14400	270447.3	3894441609.6	3894.4	8.59
Q2 2015	62664.2	31.8	31800	237184.0	7542451104.6	7542.5	16.63	91985.3	1.14	1140	348164.4	396907371.0	396.9	0.88
Q3 2015	66313.2	25.3	25300	250995.5	6350185188.6	6350.2	14.00	124137.1	1.63	1630	469858.9	765870045.3	765.9	1.69
Q4 2015	107799.1	29.6	29600	408019.6	12077379967.6	12077.4	26.63	116420.1	1.78	1780	440650.1	784357139.7	784.4	1.73
Q1 2016	100063.2	29.1	29100	378739.2	11021311069.2	11021.3	24.30	115483.2	0.84	837	437103.9	365855974.3	365.9	0.81
Q2 2016	65233.6	24.2	24200	246909.2	5975202059.2	5975.2	13.17	125606.0	0.96	959	475418.7	455926542.9	455.9	1.01
Q3 2016	51765.8	34.4	34400	195933.6	6740114223.2	6740.1	14.86	104983.6	1.78	1780	397362.9	707306008.3	707.3	1.56
Q4 2016	99522.5	31.9	31900	376692.7	12016495933.8	12016.5	26.49	98681.2	1.24	1240	373508.3	463150344.1	463.2	1.02
Q1 2017	99117.4	41.3	41300	375159.4	15494081526.7	15494.1	34.16	161.2	17.0	17000	610.1	10372414.0	10.4	0.02
Q2 2017	52808.7	39.9	39900	199880.9	7975249087.1	7975.2	17.58	101617.2	0.976	976	384621.1	375390195.6	375.4	0.83
Q3 2017	55574.6	40.0	40000	210349.9	8413994440.0	8414.0	18.55	124138.4	1.23	1230	469863.8	577932528.1	577.9	1.27
Q4 2017	106021.4	31.7	31700	401291.0	12720924668.3	12720.9	28.04	116731.9	1.29	1290	441830.2	569961011.5	570.0	1.26
Q1 2018	96900.2	44.9	44900	366767.3	16467849839.3	16467.8	36.31	116991.7	2.23	2230	442813.6	987474293.4	987.5	2.18
Q2 2018	53117.9	33.6	33600	201051.3	6755322050.4	6755.3	14.89	117758.3	1.14	1140	445715.2	508115288.7	508.1	1.12
Q3 2018	53142.6	33.8	33800	201144.8	6798693525.1	6798.7	14.99	111657.5	0.810	810	422623.6	342325146.4	342.3	0.75
Q4 2018	101606.4	38.4	38400	384580.2	14767880601.6	14767.9	32.56	114458.2	0.634	634	433224.3	274664198.0	274.7	0.61
Q1 2019	97701.0	39.3	39300	369798.4	14533077063.0	14533.1	32.04	90789.5	0.639	639	343638.1	219584725.6	219.6	0.48
Q2 2019	53197.3	33.2	33200	201351.9	6684881625.8	6684.9	14.74	88302.0	0.821	821	334223.1	274397140.5	274.4	0.60
Q3 2019	54445.7	36.4	36400	206077.0	7501201871.8	7501.2	16.54	87609.5	0.548	548	331602.0	181717872.7	181.7	0.40
Q4 2019	102211.0	33.8	33800	386868.7	13076162421.7	13076.2	28.83	85928.5	0.841	841	325239.5	273526407.8	273.5	0.60
Q1 2020	86344.4	37.1	37100	326813.5	12124780044.9	12124.8	26.73	85049.5	0.607	607	321912.2	195400732.1	195.4	0.43

ç

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-24		NAME OF	A DOM	S76015-12			TW4-25			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	57634.7	41.7	41700	218147.3	9096744057.2	9096.7	20.05	90767.9	0.851	851	343556.6	292366679.4	292.4	0.64
Q3 2020	53316.1	39.1	39100	201801.4	7890436245.4	7890.4	17.40	83956.3	0.994	994	317774.6	315867910.3	315.9	0.70
Q4 2020	103987.2	35.9	35900	393591.6	14129936716.8	14129.9	31.15	86254.4	1.64	1640	326472.7	535415252.2	535.4	1.18
Q1 2021	81891.2	41.9	41900	309958.3	12987251416.6	12987.3	28.63	80272.2	3.43	3430	303830.4	1042138109.8	1042.1	2.30
Q2 2021	54377.9	48.0	48000	205820.4	9879376872.0	9879.4	21.78	82692.8	1.57	1570	312992.2	491397829.4	491.4	1.08

Q3 2010 3707986.6 1059.4 3514872.54 67.1

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TWN-02	3 4 45 75	Target In	10 " 10 July 1	FE LES		7.550	TW4-01	DO THE TOTAL		-
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	31009.4	57.3	57300	117370.6	6725334176.7	6725.3	14.83	NA	NA	NA	NA	NA	NA	NA
Q2 2013	49579.3	57.7	57700	187657.7	10827846433.9	10827.8	23.87	NA	NA	NA	NA	NA	NA	NA
Q3 2013	50036.5	80.0	80000	189388.2	15151052200.0	15151.1	33.40	NA	NA	NA	NA	NA	NA	NA
Q4 2013	49979.9	111.0	111000	189173.9	20998305286.5	20998.3	46.29	NA	NA	NA	NA	NA	. NA	NA
Q1 2014	48320.4	42.6	42600	182892.7	7791229616.4	7791.2	17.18	NA	NA	NA	NA	NA	NA	NA
Q2 2014	47611.9	44.7	44700	180211.0	8055433555.1	8055.4	17.76	NA	NA	NA	NA	NA	NA	NA
Q3 2014	46927.2	42.0	42000	177619.5	7460016984.0	7460.0	16.45	NA	NA	NA	NA	NA	NA	NA
Q4 2014	47585.6	70.6	70600	180111.5	12715871617.6	12715.9	28.03	NA	NA	NA	NA	NA	NA	NA
Q1 2015	47262.2	48.6	48600	178887.4	8693928952.2	8693.9	19.17	24569.2	7.06	7060	92994.4	656540619.3	656.5	1.45
Q2 2015	48497.3	52.8	52800	183562.3	9692088410.4	9692.1	21.37	23989.9	6.07	6070	90801.8	551166753.0	551.2	1.22
Q3 2015	48617.4	49.7	49700	184016.9	9145637892.3	9145.6	20.16	23652.0	6.3	6280	89522.8	562203309.6	562.2	1.2
Q4 2015	46754.1	44.9	44900	176964.3	7945695655.7	7945.7	17.52	20764.3	1.55	1550	78592.9	121818957.0	121.8	0.27
Q1 2016	47670.2	86.3	86300	180431.7	15571256314.1	15571.3	34.33	19255.6	0.15	148	72882.4	10786602.0	10.8	0.02
Q2 2016	50783.0	45.4	45400	192213.7	8726499937.0	8726.5	19.24	19588.2	0.14	138	74141.3	10231504.5	10.2	0.02
Q3 2016	42329.6	35.3	35300	160217.5	5655679020.8	5655.7	12.47	15613.5	5.49	5490	59097.1	324443065.3	324.4	0.72
Q4 2016	44640.6	32.6	32600	168964.7	5508248274.6	5508.2	12.14	16756.8	0.75	746	63424.5	47314668.0	47.3	0.10
Q1 2017	45283.2	27.4	27400	171396.9	4696275388.8	4696.3	10.35	16931.8	4.44	4440	64086.9	284545671.7	284.5	0.63
Q2 2017	42550.6	25.0	25000	161054.0	4026350525.0	4026.4	8.88	18200.2	5.74	5740	68887.8	395415725.2	395.4	0.87
Q3 2017	46668.9	23.9	23900	176641.8	4221738697.4	4221.7	9.31	17413.6	5.04	5040	65910.5	332188799.0	332.2	0.73
Q4 2017	38964.7	31.9	31900	147481.4	4704656325.1	4704.7	10.37	14089.8	5.78	5780	53329.9	308246781.5	308.2	0.68
Q1 2018	43341.0	19.6	19600	164045.7	3215295426.0	3215.3	7.09	12505.7	4.84	4840	47334.1	229096920.6	229.1	0.51
Q2 2018	43697.0	19.8	19800	165393.1	3274784271.0	3274.8	7.22	10814.8	4.38	4380	40934.0	179290998.8	179.3	0.40
Q3 2018	41776.0	18.6	18600	158122.2	2941072176.0	2941.1	6.48	9727.3	4.30	4300	36817.8	158316671.2	158.3	0.35
Q4 2018	38545.8	19.6	19600	145895.9	2859558718.8	2859.6	6.30	9836.7	4.57	4570	37231.9	170149826.4	170.1	0.38
Q1 2019	44752.8	19.0	19000	169389.3	3218397612.0	3218.4	7.10	10603.6	4.51	4510	40134.6	181007163.3	181.0	0.40
Q2 2019	43432.2	45.1	45100	164390.9	7414028552.7	7414.0	16.35	9393.9	1.43	1430	35555.9	50844953.4	50.8	0.11
Q3 2019	41377.5	23.2	23200	156613.8	3633441030.0	3633.4	8.01	9734.1	1.65	1650	36843.6	60791888.0	60.8	0.13
Q4 2019	34011.4	18.2	18200	128733.1	2342943311.8	2342.9	5.17	9184.3	3.91	3910	34762.6	135921670.2	135.9	0.30
Q1 2020	32230.0	16.5	16500	121990.6	2012844075.0	2012.8	4.44	9796.7	4.67	4670	37080.5	173165979.4	173.2	0.38

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

			1 4 THE	TWN-02							TW4-01			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	30078.9	16.1	16100	113848.6	1832963047.7	1833.0	4.04	9600.2	0.443	443	36336.8	16097183.4	16.1	0.04
Q3 2020	21279.1	17.2	17200	80541.4	1385311968.2	1385.3	3.05	9487.3	2.22	2220	35909.4	79718935.7	79.7	0.18
Q4 2020	25682.1	12.0	12000	97206.7	1166480982.0	1166.5	2.57	9318.7	4.30	4300	35271.3	151666501.9	151.7	0.33
Q1 2021	23310.5	15.4	15400	88230.2	1358745734.5	1358.7	3.00	9066.4	2.72	2720	34316.3	93340401.3	93.3	0.21
Q2 2021	22717.2	13.8	13800	85984.6	1186587507.6	1186.6	2.62	8764.1	0.728	728	33172.1	24149302.3	24.1	0.05

Q3 2010 1407303.5 476.5 368658.70 11.7

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

		A 7 7 8 8		TW4-02		8-34-9	100	C-1 10	II. SEA	EL ME	TW4-1	1		ANTE ALE
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2014	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2015	24156.7	5.32	5320	91433.1	486424142.5	486.4	1.07	9898.7	8.72	8720	37466.6	326708573.2	326.7	0.72
Q2 2015	22029.9	4.30	4300	83383.2	358547637.5	358.5	0.79	5243.3	8.48	8480	19845.9	168293151.4	168.3	0.37
Q3 2015	21586.9	3.8	3760	81706.4	307216126.0	307.2	0.7	3584.4	9.6	9610	13567.0	130378427.9	130.4	0.3
Q4 2015	21769.8	5.18	5180	82398.7	426825229.7	426.8	0.94	4110.3	7.50	7500	15557.5	116681141.3	116.7	0.26
Q1 2016	20944.6	5.30	5300	79275.3	420159148.3	420.2	0.93	3676.2	7.13	7130	13914.4	99209793.2	99.2	0.22
Q2 2016	20624.0	6.67	6670	78061.8	520672472.8	520.7	1.15	3760.4	7.81	7810	14233.1	111160620.3	111.2	0.25
Q3 2016	17487.4	4.07	4070	66189.8	269392522.6	269.4	0.59	2953.8	8.83	8830	11180.1	98720574.4	98.7	0.22
Q4 2016	19740.6	6.07	6070	74718.2	453539298.0	453.5	1.00	3050.2	8.92	8920	11545.0	102981462.4	103.0	0.23
Q1 2017	19869.7	4.74	4740	75206.8	356480300.7	356.5	0.79	2984.2	8.12	8120	11295.2	91716999.6	91.7	0.20
Q2 2017	18716.7	4.90	4900	70842.7	347129276.6	347.1	0.77	2845.9	7.92	7920	10771.7	85312113,5	85.3	0.19
Q3 2017	19338.8	5.08	5080	73197.4	371842578.6	371.8	0.82	2830.0	7.78	7780	10711.6	83335859.0	83.3	0.18
Q4 2017	17327.6	3.28	3280	65585.0	215118688.5	215,1	0.47	2612.7	7.79	7790	9889.1	77035851.4	77.0	0.17
Q1 2018	16232.3	2.94	2940	61439.3	180631411.2	180.6	0.40	2571.0	7.89	7890	9731.2	76779444.2	76.8	0.17
Q2 2018	16051.4	3.50	3500	60754.5	212640921.5	212.6	0.47	2513.5	7.51	7510	9513.6	71447117.2	71.4	0.16
Q3 2018	14927.2	4.83	4830	56499.5	272892353.2	272.9	0.60	2170.2	7.15	7150	8214.2	58731580.1	58.7	0.13
Q4 2018	15464.1	3.52	3520	58531.6	206031297.1	206.0	0.45	2379.5	6.85	6850	9006.4	61693891.4	61.7	0.14
Q1 2019	16169.9	3.92	3920	61203.1	239916040.3	239.9	0.53	2342.4	7.50	7500	8866.0	66494880.0	66.5	0.15
Q2 2019	13893.7	4.38	4380	52587.7	230333926.7	230.3	0.51	2195.1	8.30	8300	8308.5	68960164.1	69.0	0.15
Q3 2019	14106.9	4.79	4790	53394.6	255760213.0	255.8	0.56	2046.0	7.15	7150	7744,1	55370386.5	55.4	0.12
Q4 2019	14220.9	3.40	3400	53826.1	183008762.1	183.0	0.40	1983.9	7.14	7140	7509.1	53614699.1	53.6	0.12
Q1 2020	13162.1	6.07	6070	49818.5	302398589.4	302.4	0.67	1947.4	7.07	7070	7370.9	52112326.6	52.1	0.11

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-02			7 4-37	Contract of			TW4-1:			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	14155.6	3.62	3620	53578.9	193955784.5	194.0	0.43	2003.9	7.56	7560	7584.8	57340796.9	57.3	0.13
Q3 2020	14009.5	3.35	3350	53026.0	177636957.6	177.6	0.39	1784.1	7.59	7590	6752.8	51253892.4	51.3	0.11
Q4 2020	14582.9	2.34	2340	55196.3	129159287.0	129.2	0.28	1394.6	7.19	7190	5278.6	37952853.6	38.0	0.08
Q1 2021	13189.6	3.30	3300	49922.6	164744698.8	164.7	0.36	2195.1	7.21	7210	8308.5	59904495.5	59.9	0.13
Q2 2021	11975.9	3.89	3890	45328.8	176328960.0	176.3	0.39	1694.5	8.17	8170	6413.7	52399786.0	52.4	0.12

Q3 2010 445734.70 16.4 76771.32 5.1

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	TW4-21							Et 4850			TW4-37		12 10	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2015	30743.7	13.1	13100	116364.9	1524380249.0	1524.4	3.4	29206.0	35.2	35200	110544.7	3891173792.0	3891.2	8.6
Q3 2015	125285.4	14.7	14700	474205.2	6970817013.3	6970.8	15.4	118063.9	32.4	32400	446871.9	14478648312.6	14478.6	31.9
Q4 2015	134774.9	14.30	14300	510123.0	7294758850.0	7294.8	16.08	111737.5	34.60	34600	422926.4	14633254737.5	14633.3	32.26
Q1 2016	125513.3	14.60	14600	475067.8	6935990471.3	6936.0	15.29	111591.0	28.40	28400	422371.9	11995362954.0	11995.4	26.45
Q2 2016	132248.7	13.10	13100	500561.3	6557353416.5	6557.4	14.46	119241.2	27.90	27900	451327.9	12592049581.8	12592.0	27.76
Q3 2016	110381.9	16.50	16500	417795.5	6893625609.8	6893.6	15.20	98377.6	33.40	33400	372359.2	12436797814.4	12436.8	27,42
Q4 2016	130311.3	13.50	13500	493228.3	6658581651.8	6658.6	14.68	101949.1	26.10	26100	385877.3	10071398665.4	10071.4	22.20
Q1 2017	54333.5	17.70	17700	205652.3	3640045665.8	3640.0	8.02	97071.7	32,30	32300	367416.4	11867549219.4	11867.5	26.16
Q2 2017	60969.7	9.53	9530	230770.3	2199241097.2	2199.2	4.85	93191.3	31.20	31200	352729.1	11005146999.6	11005.1	24.26
Q3 2017	120116.2	18.2	18200	454639.8	8274444669.4	8274.4	18.24	81749.3	30.5	30500	309421.1	9437343565.3	9437.3	20.81
Q4 2017	126492.5	16.9	16900	478774.1	8091282501.3	8091.3	17.84	87529.6	30.6	30600	331299.5	10137765801.6	10137.8	22.35
Q1 2018	117832.0	15.8	15800	445994.1	7046707096.0	7046.7	15.54	84769.3	30.0	30000	320851.8	9625554015.0	9625.6	21.22
Q2 2018	116681.0	14.1	14100	441637.6	6227089948.5	6227.1	13.73	83653.1	28.6	28600	316627.0	9055531728.1	9055.5	19.96
Q3 2018	110001.4	0.236	236	416355.3	98259850.6	98.3	0.22	77457.8	25.4	25400	293177.8	7446715434.2	7446.7	16.42
Q4 2018	121686.3	15.2	15200	460582.6	7000856211.6	7000.9	15.43	76271.4	27.3	27300	288687.2	7881161897.7	7881.2	17.38
Q1 2019	123264.1	8.99	8990	466554.5	4194325339.8	4194.3	9.25	77591.4	30.1	30100	293683.4	8839871814.9	8839.9	19.49
Q2 2019	106893.6	17.5	17500	404592.3	7080364830.0	7080.4	15.61	64950.1	31.2	31200	245836.1	7670087209.2	7670.1	16.91
Q3 2019	108132.9	14.7	14700	409283.0	6016460489.6	6016.5	13.26	67572.0	25.8	25800	255760.0	6598608516.0	6598.6	14.55
Q4 2019	116167.6	5.73	5730	439694.2	2519447632.8	2519.4	5.55	66732.4	25.5	25500	252582.1	6440844417.0	6440.8	14.20
Q1 2020	106622.0	8.93	8930	403564.3	3603829269.1	3603.8	7,95	65554.2	28.3	28300	248122.6	7021870910.1	7021.9	15.48

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-21							TW4-37	5.424 378 3	Diversion of	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q2 2020	110999.1	15.4	15400	420131.7	6470028288.6	6470.0	14.26	65163.8	28.3	28300	246645.0	6980053018.9	6980.1	15.39
Q3 2020	99515.1	12.6	12600	376664.7	4745975111.0	4746.0	10.46	56659.3	29.5	29500	214455.5	6326435789.8	6326.4	13.95
Q4 2020	107061.2	16.3	16300	405226.5	6605191796.8	6605.2	14.56	61323.9	28.7	28700	232111.0	6661584595.1	6661.6	14.69
Q1 2021	97211.5	15.2	15200	367945.5	5592771442.7	5592.8	12.33	59907.4	26.9	26900	226749.5	6099561792.1	6099.6	13.45
Q2 2021	97157.6	21.5	21500	367741.5	7906442594.0	7906.4	17.43	58564.2	26.6	26600	221665.5	5896302220.2	5896.3	13.00

Q3 2010 2690396.4 309.0 2015878.5 496.2

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	A THE REAL		4000	TW4-39	SOUTH THE STATE OF			1000			TW4-4	.0		I R. N
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2010	NA	NA -	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2016	3589.3	20.70	20700	13585.5	281219860.4	281.2	0.62	NA	NA	NA	NA	NA	NA	NA
Q1 2017	103117.8	6.44	6440	390300.9	2513537622.1	2513.5	5.54	NA	NA	NA	NA	NA	NA	NA
Q2 2017	41313.0	6.25	6250	156369.7	977310656.3	977.3	2.15	NA	NA	NA	NA	NA	NA	NA
Q3 2017	34546.3	7.74	7740	130757.7	1012064950.2	1012.1	2.23	NA	NA	NA	NA	NA	NA	NA
Q4 2017	68180.2	2.65	2650	258062.1	683864451.1	683.9	1.51	NA	NA	NA	NA	NA	NA	NA
Q1 2018	59262.2	3.33	3330	224307.4	746943731.9	746.9	1.65	NA	NA	NA	NA	NA	NA	NA
Q2 2018	34259.8	4.84	4840	129673.3	627618980.1	627.6	1.38	NA	NA	NA	NA	NA	NA	NA
Q3 2018	33473.4	6.05	6050	126696.8	766515755.0	766.5	1.69	NA	NA	NA	NA	NA	NA	NA
Q4 2018	37003.6	6.39	6390	140058.6	894974620.1	895.0	1.97	NA	NA	NA	NA	NA	NA	NA
Q1 2019	49116.9	2.08	2080	185907.5	386687530.3	386.7	0.85	NA	NA	NA	NA	NA	NA	NA
Q2 2019	34285.7	8.45	8450	129771.4	1096568114.5	1096.6	2.42	81762.8	3.55	3550.0	309472.2	1098626302.9	1098.6	2.4
Q3 2019	36976.2	1.75	1750	139954.9	244921104.8	244.9	0.54	116414.2	3.39	3390.0	440627.7	1493728062.3	1493.7	3.3
Q4 2019	51808.6	0.948	948	196095.6	185898582.3	185.9	0.41	108281.9	2.89	2890.0	409847.0	1184457696.0	1184.5	2.6
Q1 2020	43169.3	0.792	792	163395.8	129409474.0	129.4	0.29	102021.5	2.98	2980.0	386151.4	1150731217.7	1150.7	2.5

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-39			1500 30	TW4-40							
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	
Q2 2020	37352.7	5.01	5010	141380.0	708313647.2	708.3	1.56	100757.1	2.91	2910.0	381365.7	1109774294.8	1109.8	2.4	
Q3 2020	35628.2	2.69	2690	134852.7	362753862.5	362.8	0.80	86264.5	2.88	2880.0	326511.1	940352061.6	940.4	2.1	
Q4 2020	46794.2	7.03	7030	177116.0	1245125810.4	1245.1	2.75	77535.9	2.58	2580.0	293473.5	757161617.2	757.2	1.7	
Q1 2021	38932.4	2.12	2120	147359.1	312401364.1	312.4	0.69	72543.4	2.43	2430.0	274576.7	667221272.7	667.2	1.5	
Q2 2021	32865.2	12.0	12000	124394.8	1492737384.0	1492.7	3.29	66866.4	3.77	3770.0	253089.3	954146751.5	954.1	2.1	

Q3 2010 821675.00 32.3 812447.7 20.6

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

			N KALE	TW4-41	A PERMIT	8071 BU		MENTON Y
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Removed by All Wells
Q3 2010	NA	NA	NA	NA	NA	NA	NA	15.69
Q4 2010	NA	NA	NA	NA	NA	NA	NA	27.97
Q1 2011	NA	NA	NA	NA	NA	NA	NA	73.30
Q2 2011	NA	NA	NA	NA	NA	NA	NA	27.01
Q3 2011	NA	NA	NA	NA	NA	NA	NA	16.82
Q4 2011	NA	NA	NA	NA	NA	NA	NA	19.71
Q1 2012	NA	NA	NA	NA	NA	NA	NA	15.86
Q2 2012	NA	NA	NA	NA	NA	NA	NA	15.03
Q3 2012	NA	NA	NA	NA	NA	NA	NA	14.67
Q4 2012	NA	NA	NA	NA	NA	NA	NA	14.92
Q1 2013	NA	NA	NA	NA	NA	NA	NA	95.73
Q2 2013	NA	NA	NA	NA	NA	NA	NA	91.71
Q3 2013	NA	NA	NA	NA	NA	NA	NA	176.53
Q4 2013	NA	NA	NA	NA	NA	NA	NA	162.07
Q1 2014	NA	NA	NA	NA	NA	NA	NA	103.14
Q2 2014	NA	NA	NA	NA	NA	NA	NA	101.87
Q3 2014	NA	NA	NA	NA	NA	NA	NA	92.99
Q4 2014	NA	NA	NA	NA	NA	NA	NA	108.57
Q1 2015	NA	NA	NA	NA	NA	NA	NA	82.61
Q2 2015	NA	NA	NA	NA	NA	NA	NA	68.86
Q3 2015	NA	NA	NA	NA	NA	NA	NA	118.63
Q4 2015	NA	NA	NA	NA	NA	NA	NA	124.50
Q1 2016	NA	NA	NA	NA	NA	NA	NA	132.55
Q2 2016	NA	NA	NA	NA	NA	NA	NA	99.98
Q3 2016	NA	NA	NA	NA	NA	NA	NA	101.12
Q4 2016	NA	NA	NA	NA	NA	NA	NA	106.06
Q1 2017	NA	NA	NA	NA	NA	NA	NA	116.19
Q2 2017	NA	NA	NA	NA	NA	NA	NA	80.12
Q3 2017	NA	NA	NA	NA	NA	NA	NA	93.37
Q4 2017	NA	NA	NA	NA	NA	NA	NA	106.21
Q1 2018	NA	NA	NA	NA	NA	NA	NA	111.99
Q2 2018	73711.2	6.54	6540	278996.9	1824639673.7	1824.6	4.02	84.14
Q3 2018	44981.6	6.13	6130	170255.2	1043664404.2	1043.7	2.30	61.86
Q4 2018	35431.5	6.02	6020	134108.2	807331529.6	807.3	1.78	98.49
Q1 2019	31903.6	6.71	6710	120755.1	810266895.5	810.3	1.79	101.08
Q2 2019	25146.5	6.00	6000	95179.5	571077015.0	571.1	1.26	101.72
Q3 2019	24045.6	6.22	6220	91012.6	566098347.1	566.1	1.25	80.19
Q4 2019	21186.4	6.11	6110	80190.5	489964101.6	490.0	1.08	76.97
Q1 2020	17289.9	6.12	6120	65442.3	400506701.6	400.5	0.88	86.86

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	阿尔 克克克	UPS II		TW4-41				
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Removed by All Wells
Q2 2020	17294.9	6.78	6780	65461.1	443826399.0	443.8	0.98	85.95
Q3 2020	13411.4	6.69	6690	50762.3	339599536.5	339.6	0.75	81.69
Q4 2020	17765.7	6.25	6250	67243.3	420270313.8	420.3	0.93	89.15
Q1 2021	13407.5	6.41	6410	50747.3	325290026.0	325.3	0.72	88.22
Q2 2021	13168.7	7.45	7450	49843.5	371334294.8	371.3	0.82	91.09

Q3 2010 348744.46

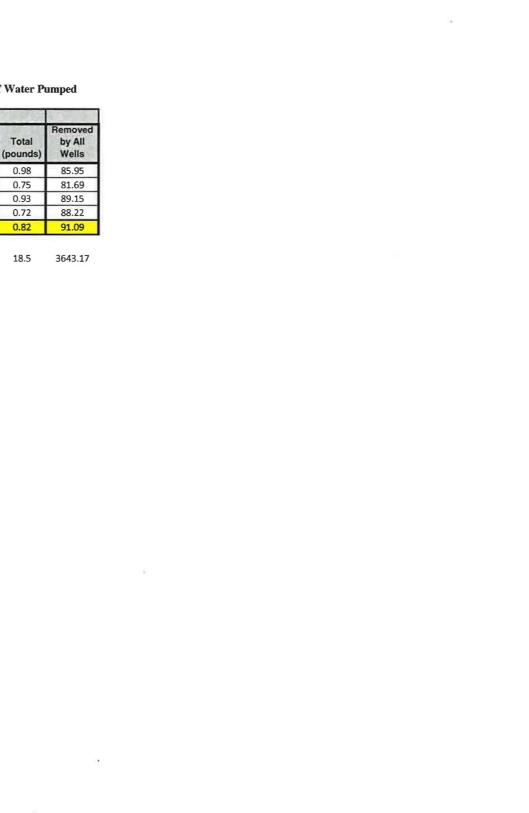


Table 5
Nitrate Date Over Time for MW-30, MW-31, MW-5, and MW-11

Date	MW-30	MW-31	MW-5	MW-11
Q2 2010	15.8	22.5	ND	ND
Q3 2010	15	21	NS	ND
Q4 2010	16	20	0.2	ND
Q1 2011	16	21	NS	ND
Q2 2011	17	22	0.2	ND
Q3 2011	16	21	NS	ND
Q4 2011	16	21	0.2	ND
Q1 2012	17	21	NS	ND
Q2 2012	16	20	0.1	ND
Q3 2012	17	21	NS	ND
Q4 2012	18.5	23.6	ND	ND
Q1 2013	21.4	19.3	NS	ND
Q2 2013	18.8	23.8	ND	ND
Q3 2013	17.6	21.7	NS	ND
Q4 2013	19.5	23.9	0.279	ND
Q1 2014	18.4	20.6	NS	ND
Q2 2014	19.4	23.1	ND	ND
Q3 2014	16.8	18.9	NS	ND
Q4 2014	16.2	20.9	0.21	ND
Q1 2015	14.9	18.7	NS	ND
Q2 2015	17.0	19.0	0.142	ND
Q3 2015	17.9	19.9	NS	ND
Q4 2015	16.3	18.4	0.118	ND
Q1 2016	20.0	18.8	NS	ND
Q2 2016	17.3	18.6	0.156	0.117
Q3 2016	18.0	19.7	NS	ND
Q4 2016	17.2	18.8	0.241	ND
Q1 2017	17.4	21.1	NS	ND
Q2 2017	17.5	18.3	0.133	ND
Q3 2017	19.2	19.5	NS	ND
Q4 2017	17.4	19.2	0.337	ND
Q1 2018	17.6	18.8	NS	ND
Q2 2018	17.3	19.0	0.216	ND
Q3 2018	18.0	20.1	NS	ND
Q4 2018	17.3	18.3	0.309	ND
Q1 2019	17.9	19.0	NS	ND
Q2 2019	18.5	19.7	0.260	ND
Q3 2019	19.3	19.8	NS	0.558
Q4 2019	18.2	19.8	0.235	0.160
Q1 2020	16.4	17.5	NS	0.308
Q2 2020	18.1	18.8	0.142	0.297
Q3 2020	18.4	19.2	NS	0.651
Q4 2020	16.8	18.6	0.191	0.933
Q1 2021	17.7	17.1	NS	1.21
Q2 2021	17.7	18.6	<0.100	0.948

ND = Not detected NS = Not Sampled

TABLE 6
Slug Test Results
(Using KGS Solution and Automatically Logged Data)

Well	K (cm/s)	K (ft/day)
MW-30	1.0E-04	0.28
MW-31	7.1E-05	0.20
TW4-22	1.3E-04	0.36
TW4-24	1.6E-04	0.45
TW4-25	5.8E-05	0.16
TWN-2	1.5E-05	0.042
TWN-3	8.6E-06	0.024
	Average 1	0.22
	Average 2	0.15
	Average 3	0.32
	Average 4	0.31

Notes:

Average 1 = arithemetic average of all wells

Average 2 = geometric average of all wells

Average 3 = arithemetic average of MW-30, MW-31, TW4-22, and TW4-24

Average 4 = geometric average of MW-30, MW-31, TW4-22, and TW4-24

cm/s = centimeters per second

ft/day = feet per day

K = hydraulic conductivity

KGS = KGS Unconfined Slug Test Solution in Aqtesolve TM .

TABLE 7
Pre-Pumping Saturated Thicknesses

Well	Depth to Brushy Basin (ft)	Depth to Water Fourth Quarter, 2012 (ft)	Saturated Thickness Above Brushy Basin (ft)
TW4-22	112	53	58
TW4-24	110	55	55

Notes:

ft = feet

TABLE 8
Pre-Pumping Hydraulic Gradients and Flow Calculations

Pathline Boundaries	Path Length	Head Change	Hydraulic Gradient
Patrillile Boundaries	(ft)	(ft)	(ft/ft)
TW4-25 to MW-31	2060	48	0.023
TWN-2 to MW-30	2450	67	0.027
		average	0.025
		¹ min flow (gpm)	1.31
		² max flow (gpm)	2.79

Notes:

ft = feet

ft/ft = feet per foot

gpm = gallons per minute

¹ assumes width = 1,200 ft; saturated thickness = 56 ft; K = 0.15 ft/day; and gradient = 0.025 ft/ft

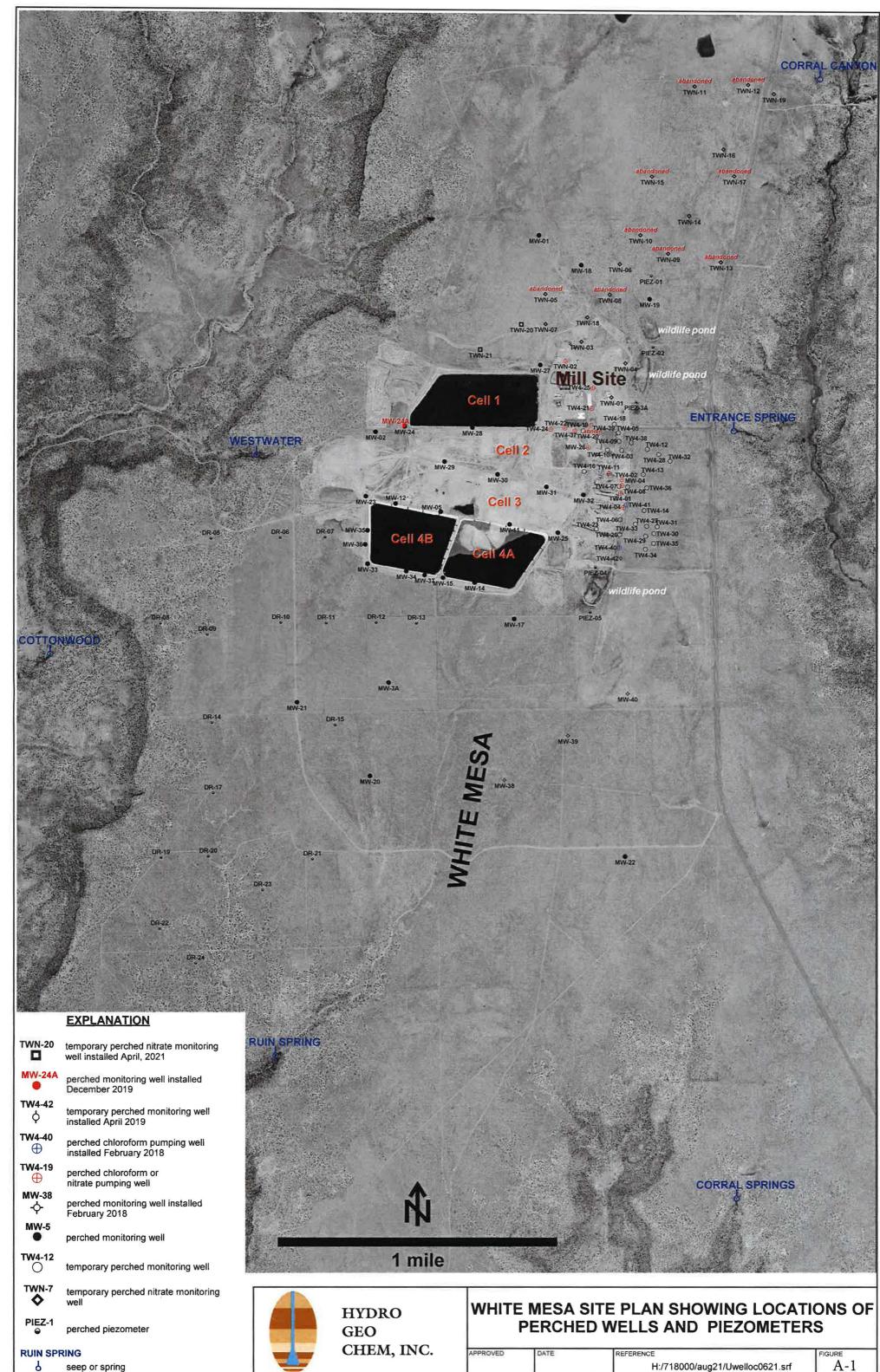
 $^{^{2}}$ assumes width = 1,200 ft; saturated thickness = 56 ft; K = 0.32 ft/day; and gradient = 0.025 ft/ft

Table 9
*Recalculated Background Flow

	Background Flow (gpm)	*Recalculated Background Flow (gpm)
minimum	1.31	0.79
maximum	2.79	1.67

^{*} recalculated based on reduced widlife pond recharge as presented in the third quarter, 2015 Nitrate Monitoring Report

gpm = gallons per minute

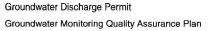

INDEX OF TABS

Tab A	Site Plan and Perched Well Locations white iviesa Site				
Tab B	Order of Sampling and Field Data Worksheets				
Tab C	Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Weekly, Monthly and Quarterly Depth to Water Data				
Tab D	Kriged Previous Quarter Groundwater Contour Map				
Tab E	Hydrographs of Groundwater Elevations over Time for Nitrate Monitoring Wells				
Tab F	Depths to Groundwater and Elevations over Time for Nitrate Monitoring Wells				
Tab G	Laboratory Analytical Reports				
Tab H	Quality Assurance and Data Validation Tables				
	 H-1 Field Data QA/QC Evaluation H-2 Holding Time Evaluation H-3 Analytical Method Check H-4 Reporting Limit Evaluation H-5 QA/QC Evaluation for Sample Duplicates H-6 QC Control Limits for Analyses and Blanks H-7 Receipt Temperature Evaluation H-8 Rinsate Evaluation 				
Tab I	Kriged Current Quarter Isoconcentration Maps				
Tab J	Analyte Concentration Data over Time				
Tab K	Concentration Trend Graphs				
Tab L	CSV Transmittal Letter				

Tab M Residual Mass Estimate Analysis Figure

Tab A

Site Plan and Perched Well Locations White Mesa Site


P seep or spring

Tab B

Order of Sampling and Field Data Worksheets

Nitrate Order 2nd Quarter 2021

	Nitrate	Nitrate	Samples			R	insate Samp	les
Name	Mg/L Previous Qrt.	Date/Purge	sample	Depth	Total Depth	Name	Date	Sample
TWN-18	0.228	5/25/21	0811		145	TWN- IKR	5/25/21	0740
ΓWN-04	1.64	5/25/21	0847		125.7			
TWN-01	2.53	5/25/21	0922		112.5			
TWN-02	15.4	5/25/21	0930		96			
WN-07	16.00	5/27/21	0830		105			
WN-03	23.8	5/27/21	0840		96			
WN-20	TBD	6/3/204	0800					
WN-21	TBD	6/3/2021	0815					
uplicate of	TWN-18	5/25/21	0811					
) Sample		5/25/21	0715					
lez-0 2	0.401	5/27/21	0855			Samplers:	Tanger,	Deen
lez-01	7.34	5/27/21	0912					
iez -03A	11.1	5/27/21	0930					

Location ID	PIEZ-01
Field Sample ID	Piez-01_05272021
Purge Date & Time	5/27/2021 9:07
Sample Date & Time	5/27/2021 9:12

Purging Equipment	Bailer		
Pump Type	Grundfos		
Purging Method	2 Casings		
Casing Volume ()			
Calculated Casing Volumes Purge Duration ()			
pH Buffer 7.0	7.0		
pH Buffer 4.0	4.0		
Specific Conductance (micromhos)	1000		

Sampling Program	Nitrate Quarterly 2021 Q2 Nitrate		
Sampling Event			
	T		
Sampler	TH/DL		

Weather Conditions	Sunny 18 Piez-02		
External Ambient Temperature (C)			
Previous Well Sampled			

Well Depth (ft)	107.50			
Well Casing Diameter (in)	1			
Depth to Water Before Purging (ft)	67.21			

		Conductivity					Dissolved	_
Date/Time	Gallons Purged	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
5/27/2021 9:11		2374	7.56	15.93	360	7.4	63.1	

Volume of water purged ()

Final Depth to Water (feet)	67.84

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations

Flow Rate (Q = S/60) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

***************************************	Sample	Container			Pres	ervative	
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Υ	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Υ	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 0907. Samples bailed and collected at 0912. Water was mostly clear. Left site at 0916.

Location ID	PIEZ-02
Field Sample ID	Piez-02_05272021
Purge Date & Time	5/27/2021 8:50
Sample Date & Time	5/27/2021 8:55

Purging Equipment	Bailer
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume ()	
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly	
Sampling Event	2021 Q2 Nitrate	
Sampler	TH/DL	

Weather Conditions	Sunny	
External Ambient Temperature (C)	17	
Previous Well Sampled	TWN-03	

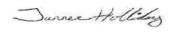
Well Depth (ft)	100.00	
Well Casing Diameter (in)	1	
Depth to Water Before Purging (ft)	45.95	

		Conductivity					Dissolved	
Date/Time	Gallons Purged	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
5/27/2021 8:54		919.0	7.63	15.80	434	3.4	68.5	

Volume of water purged () Final Depth to Water (feet) 46.37

Name of Certified An	lytical Laboratory	
AWSL		

Pumping Rate Calculations


Flow Rate (Q = S/60) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Co	ntainer		Prese	rvative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Υ	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Υ	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 0850. Samples bailed and collected at 0855. Water was mostly clear. Left site at 0901.

Location ID	PIEZ-03A
Field Sample ID	Piez-03A_05272021
Purge Date & Time	5/27/2021 9:23
Sample Date & Time	5/27/2021 9:30

Purging Equipment	Bailer
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume ()	
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly
Sampling Event	2021 Q2 Nitrate

Sampler	TH/DL
A CONTRACT OF THE CONTRACT OF	

Weather Conditions	Sunny 19	
External Ambient Temperature (C)		
Previous Well Sampled	Piez-01	

Well Depth (ft)	79.00	
Well Casing Diameter (in)	1	
Depth to Water Before Purging (ft)	57.18	

		Conductivity					Dissolved	
Date/Time	Gallons Purged	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
5/27/2021 9:29		1085	7.47	16.00	365	36.0	95.1	

Volume of water purged ()

Final Depth to Water (feet) 57.90

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations

Flow Rate ($Q = S/60$) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Container		Container		ervative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Υ	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Υ	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 0923. Samples bailed and collected at 0930. Water was a little murky. Left site at 0935.

Location ID	TWN-01
Field Sample ID	TWN-01_05252021
Purge Date & Time	5/25/2021 9:17
Sample Date & Time	5/25/2021 9:22

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	24.12
Calculated Casing Volumes Purge Duration (min)	4.38
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly	
Sampling Event	2021 Q2 Nitrate	
Sampler	TH/DL	
Weather Conditions	Sunny	
External Ambient Temperature (C)	16.00	

TWN-04

Well Depth (ft)	106.13	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	69.18	

Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
5/25/2021 9:19	22.00	903.0	7.38	15.49	495	5.5	44.0	
5/25/2021 9:20	33.00	914.0	7.40	15.48	493	6.0	45.0	
5/25/2021 9:21	44.00	926.0	7.41	15.37	491	6.0	44.7	
5/25/2021 9:22	55.00	934.0	7.47	15.34	489	6.1	45.0	

Previous Well Sampled

Volume of water purged (gals)	55.00

Final Depth to Water (feet) 100.54

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	5.00
Number of casing Volumes	2.00
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Co	ntainer		Prese	ervative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Υ	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0913. Purge began at 0917. Purged well for a total of 5 minutes. Purge ended and samples collected at 0922. Water was clear. Left site at 0925.

Location ID	TWN-02		
Field Sample ID	TWN-02_05252021		
Purge Date & Time	5/25/2021 9:29		
Sample Date & Time	5/25/2021 9:30		

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	23.29
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Nitrate Quarterly	
2021 Q2 Nitrate	

Sampler	TH/DL
M	

Weather Conditions	Sunny	
External Ambient Temperature (C)	16	
Previous Well Sampled	TWN-01	

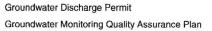
Well Depth (ft)	95.90	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	60.23	

							Dissolved	
Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
5/25/2021 9:30		2072	7.32	16.01	481	0	138.0	

Pumping Rate Calculations

Volume of water purged () Flow Rate (Q = S/60) (gal/min)		16.00	
100		Time to evacuate 2 Casing Volumes ()	
Final Depth to Water (feet)	76.29	Number of casing Volumes	
1.		Volume, if well evacuated to dryness ()	0

Name of Certified Analytical Laboratory	
AWSL	


Analytical Samples Information

	Sample	Container			Preservative		
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Υ	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 0927. Samples collected at 0930. Water was clear. Left site at 0935. Continuous pumping well.

Location ID	TWN-03
Field Sample ID	TWN-03_05272021
Purge Date & Time	5/26/2021 13:32
Sample Date & Time	5/27/2021 8:40

Purging Equipment	Pump		
Pump Type	Grundfos		
Purging Method	2 Casings		
Casing Volume (gal)	34.29		
Calculated Casing Volumes Purge Duration (min)	6.23		
pH Buffer 7.0	7.0		
pH Buffer 4.0	4.0		
Specific Conductance (micromhos)	1000		

Sampling Program	Nitrate Quarterly		
Sampling Event	2021 Q2 Nitrate		
Sampler	TH/DL		

Weather Conditions	Cloudy
External Ambient Temperature (C)	23
Previous Well Sampled	TWN-07

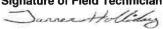
Well Depth (ft)	96.00	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	43.48	

Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
5/26/2021 13:36	46.75	2387	7.25	15.34	437	5.2	40.0	
5/27/2021 8:40		2355	7.47	14.74				Before
5/27/2021 8:41		2363	7.45	14.77				After

Volume of water purged (gals)	46.75
Final Depth to Water (feet)	93.55

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations


Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	4.25
Number of casing Volumes	1.36
Volume, if well evacuated to dryness (gals)	46.75

Analytical Samples Information

	Sample		Container			Prese	rvative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 1328. Purge began at 1332. Purged well for a 4 15 minutes and 15 seconds. Purged well dry. Purge ended at 1336. Water was clear. Left site at 1340. Arrived on site at 0836. Depth to water was 42.72. Samples bailed and collected at 0840. Left site at 0843.

Location ID	TWN-04
Field Sample ID	TWN-04_05252021
Purge Date & Time	5/25/2021 8:37
Sample Date & Time	5/25/2021 8:47

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	42.16
Calculated Casing Volumes Purge Duration (min)	7.66
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly
Sampling Event	2021 Q2 Nitrate
Sampler	TH/DI

Weather Conditions	Sunny	
External Ambient Temperature (C)	14	
Previous Well Sampled	TWN-18	

Well Depth (ft)	126.40	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	62.03	

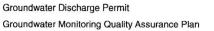
Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
5/25/2021 8:44	77.00	1060	7.37	14.83	446	0	73.0	
5/25/2021 8:45	88.00	1055	7.40	14.83	446	0	71.0	
5/25/2021 8:46	99.00	1052	7.44	14.84	445	0	71.0	
5/25/2021 8:47	110.00	1051	7.47	14.82	445	0	70.0	

Pumping Rate Calculations

Volume of water purged (gals)	110.00
Final Depth to Water (feet)	63.20

Name of Certified Analytical Laboratory	
AWSL	

Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	10.00
Number of casing Volumes	2.00
Volume, if well evacuated to dryness ()	0


Analytical Samples Information

	Sample		Co	ntainer		Preser	vative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Υ	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Υ	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y

Comments:

Arrived on site at 0833. Purge began at 0837. Purged well for a total of 10 minutes. Purge ended and samples collected at 0847. Water was clear. Left site at 0851.

Location ID	TWN-07
Field Sample ID	TWN-07_05272021
Purge Date & Time	5/26/2021 13:04
Sample Date & Time	5/27/2021 8:30

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	17.42
Calculated Casing Volumes Purge Duration (min)	3.16
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly	
Sampling Event	2021 Q2 Nitrate	
	The state of the s	
Sampler	TH/DL	

Weather Conditions	Cloudy	

Weather Conditions	Cloudy	
External Ambient Temperature (C)	23	
Previous Well Sampled	TWN-02	

Well Depth (ft)	107.20		
Well Casing Diameter (in)	4		
Depth to Water Before Purging (ft)	80.52		

		Conductivity					Dissolved	
Date/Time	Gallons Purged (gal)	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
5/26/2021 13:05	19.25	1855	7.54	15.34	360	5.9	83.0	
5/27/2021 8:29		1945	7.30	14.23				Before
5/27/2021 8:31		1940	7.35	14.30				After

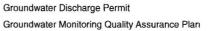
		Pumpi
Volume of water purged (gals)	19.25	Flow R

Final Depth to Water (feet)	104.34

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	1.75
Number of casing Volumes	1.10
Volume, if well evacuated to dryness (gals)	19.25


Analytical Samples Information

	Sample		Co	ntainer		Prese	rvative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Υ	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 1300. Purge began at 1304. Purged well for a total of 1 minute and 45 seconds. Purged well dry. Purge ended at 1306. Left site at 1310. Arrived on site at 0825. Depth to water was 91.77. Samples bailed and collected at 0830. Left site at 0832.

Location ID	TWN-18
Field Sample ID	TWN-18_05252021
Purge Date & Time	5/25/2021 7:59
Sample Date & Time	5/25/2021 8:11

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	55.23
Calculated Casing Volumes Purge Duration (min)	10.04
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Nitrate Quarterly		
Sampling Event	2021 Q2 Nitrate		

Sampler	TH/DL	
---------	-------	--

Weather Conditions	Sunny	
External Ambient Temperature (C)	13	
Previous Well Sampled	TWN-18R	

Well Depth (ft)	147.00		
Well Casing Diameter (in)	4		
Depth to Water Before Purging (ft)	62.41		

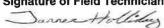
Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
5/25/2021 8:08	99.00	2791	7.07	14.58	470	1.1	2.0	
5/25/2021 8:09	110.00	2789	7.09	14.58	469	1.2	1.8	
5/25/2021 8:10	121.00	2788	7.09	14.58	468	1.2	1.9	
5/25/2021 8:11	132.00	2787	7.09	14.58	467	1.3	1.9	

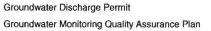
Volume of water purged (gals)	132.00
volume of water purged (gais)	132.00

Final Depth to Water (feet)	63.87

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations


Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	12.00
Number of casing Volumes	2.00
Volume, if well evacuated to dryness ()	0


Analytical Samples Information

	Sample		Co	ntainer		Preser	vative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Υ	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 0755. Purge began at 0759. Purged well for a total of 12 minutes. Purge ended and samples collected at 0811. Water was clear. Left site at 0814.

TWN-18R

Field Sample ID		TWN-18R_05252021	1	Sampling Event		202:	1 Q2 Nitrate	
Purge Date & Time				N N N N N N N N N N N N N N N N N N N		A		
Sample Date & Time		5/25/2021 7:40		Sampler		TH/DL		
Purging Equipment			٦	Weather Conditions				
			4		7//			
Pump Type			4	External Ambient T	emperature ()			
Purging Method				Previous Well Sam	pled			
Casing Volume ()						··		
Calculated Casing Volu	mes Purge Duration ()			ă				
pH Buffer 7.0				Well Depth (ft)				
pH Buffer 4.0				Well Casing Diameter ()				
Specific Conductance ()			Depth to Water Before Purging (ft)				
							1141	
		Conductivity					Dissolved	
Date/Time	Gallons Purged (gal)	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/Afte
5/25/2021 7:37	133.00	1.6	7.65	20.15	430	0	42.0	
			Pumping Rate 0	Calculations				

Sampling Program

Volume of water purged ()					
Final Depth to Water (feet)					

Name of Certified Analytical Laboratory	
AWSL	

Flow Rate (Q = S/60) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	

Analytical Samples Information

	Sample		Container			Prese	ervative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Co	 	

Location ID

Location ID	TWN-20
Field Sample ID	TWN-20_06032021
Purge Date & Time	6/2/2021 9:07
Sample Date & Time	6/3/2021 8:00

Pump
Grundfos
2 Casings
13.22
2.40
7.0
4.0
1000

Sampling Program	Nitrate Quarterly		
Sampling Event	2021 Q2 New Nitrate Wells		
	T11/01		
Sampler	TH/DL		

Weather Conditions	Sunny	
External Ambient Temperature (C)	19	
Previous Well Sampled	Pies-03A	

Well Depth (ft)	98.20		
Well Casing Diameter (in)	4		
Depth to Water Before Purging (ft)	77.94		

Date/Time	Gallons Purged (gal)	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
6/2/2021 9:08	13.75	3375	7.28	15.44	475	8.0	51.0	
6/3/2021 7:59		3462	7.42	15.41				Before
6/3/2021 8:02		3467	7.41	15.44				After

Volume of water purged (gals) 13.75

Final Depth to Water (feet) 96.04

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes (min)	1.25
Number of casing Volumes	1.04
Volume, if well evacuated to dryness (gals)	13.75

Analytical Samples Information

	Sample	Sample		Container		Preservative	
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
Chloride	Υ	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 0903. Purge began at 0907. Purged well for a total of 1 minute and 15 seconds. Purged well dry. Purge ended at 0908. Water was mostly clear. Left site at 0912. Arrived on site at 0756. Depth to water was 78.04. Samples bailed and collected at 0800. Left site at 0804.

Location ID	TWN-21
Field Sample ID	TWN-21_06032021
Purge Date & Time	6/2/2021 9:40
Sample Date & Time	6/3/2021 8:15

Purging Equipment	Pump		
Pump Type	Grundfos		
Purging Method	2 Casings		
Casing Volume (gal)	19.19		
Calculated Casing Volumes Purge Duration (min)	3.49		
pH Buffer 7.0	7.0		
pH Buffer 4.0	4.0		
Specific Conductance (micromhos)	1000		

Sampling Program	Nitrate Quarterly
Sampling Event	2021 Q2 New Nitrate Wells

Weather Conditions	Sunny		
External Ambient Temperature (C)	21		
Previous Well Sampled	TWN-20		

Well Depth (ft)	108.65		
Well Casing Diameter (in)	4		
Depth to Water Before Purging (ft)	79.25		

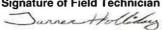
		Conductivity					Dissolved	
Date/Time	Gallons Purged (gal)	(umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
6/2/2021 9:42	22.00	3791	6.99	15.48	513	4.0	93.0	
6/3/2021 8:14		3770	7.42	15.78				Before
6/3/2021 8:16		3779	7.40	15.80				After

Volume of water purged (gals)	22.00

Final Depth to Water (feet)	106.21
ina bepin to trate (test)	1 200.22

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations


Flow Rate (Q = S/60) (gal/min)	11.00		
Time to evacuate 2 Casing Volumes (min)	2.00		
Number of casing Volumes	1.14		
Volume, if well evacuated to dryness (gals)	22.00		

Analytical Samples Information

210	Sample		Container		Container			Prese	ervative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?		
Chloride	Υ	WATER	1	500-mL Poly	U	None	N		
Nitrate/nitrite as N	Υ	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Y		

Comments:

Arrived on site at 0936. Purge began at 0940. Purged well for a total of 2 minutes. Purged well dry. Purge ended at 0942. Water was clear. Left site at 0946. Arrived on site at 0812. Depth to water was 79.35. Samples bailed and collected at 0815. Left site at 0818.

Location ID	TW4-22			
Field Sample ID	TW4-22_06092021			
Purge Date & Time	6/9/2021 7:42			
Sample Date & Time	6/9/2021 7:43			

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	29.19
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Chloroform Monitoring
Sampling Event	2021 Q2 Chloroform
Sampler	TH/DL
Weather Conditions	Sunny
External Ambient Temperature (C)	20
Previous Well Sampled	TW4-24

Well Depth (ft)	114.70	
Well Casing Diameter (in)	4	
Depth to Water Before Purging (ft)	69.99	

Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
6/9/2021 7:42		5640	7.16	15.53	419	1.9	77.0	

Volume of water purged ()	

Final Depth to Water (feet)	108.86

Name of Certified Analytical Laboratory					
AWSL					

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	16.00
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Co	ntainer		Prese	rvative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
VOCs-Chloroform	Υ	WATER	3	40ml VOA	U	HCl (pH<2), 4 Deg C	Υ
Chloride	Υ	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 0739. Samples collected at 0743. Water was clear. Left site at 0745.

Location ID	TW4-24		
Field Sample ID	TW4-24_06092021		
Purge Date & Time	6/9/2021 7:34		
Sample Date & Time	6/9/2021 7:35		

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	27.71
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Chloroform Monitoring	
Sampling Event	2021 Q2 Chloroform	
Sampler	TH/DL	
Weather Conditions	Sunny	
External Ambient Temperature (C)	20	

TW4-25

Well Depth (ft)	114.80		
Well Casing Diameter (in)	4		
Depth to Water Before Purging (ft)	72.35		

Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
6/9/2021 7:34		9615	7.00	15.25	430	3.2	17.5	

Previous Well Sampled

Volume of water purged ()	
Final Depth to Water (feet)	89.71

Name of Certified Analytical Laboratory	
AWSL	

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	16.00
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Co	ontainer		Preserva	ative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
VOCs-Chloroform	Υ	WATER	3	40ml VOA	U	HCl (pH<2), 4 Deg C	Υ
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Υ	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 0731. Samples collected at 0735. Water was clear. Left site at 0737.

Location ID	TW4-25
Field Sample ID	TW4-25_06092021
Purge Date & Time	6/9/2021 7:25
Sample Date & Time	6/9/2021 7:26

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume (gal)	42.97
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Chloroform Monitoring
Sampling Event	2021 Q2 Chloroform

Sampler TH/DL

Weather Conditions	Sunny		
External Ambient Temperature (C)	17		
Previous Well Sampled	TW4-21		

Well Depth (ft)	136.70		
Well Casing Diameter (in)	4		
Depth to Water Before Purging (ft)	70.89		

Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
6/9/2021 7:25		2580	7.23	15.26	415	5.7	35.1	

Pumping Rate Calculations

Flow Rate (Q = S/60) (gal/min)	11.00
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

103.68

Name of Certified Analytical Laboratory					
AWSL					

Analytical Samples Information

	Sample		Co	ntainer		Prese	ervative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
VOCs-Chloroform	Y	WATER	3	40ml VOA	U	HCl (pH<2), 4 Deg C	Υ
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

Arrived on site at 0722. Samples collected at 0726. Water was clear. Left site at 0728.

Location ID	TWN-60			
Field Sample ID	TWN-60_05252021			
Purge Date & Time	5/25/2021 7:12			
Sample Date & Time	5/25/2021 7:15			

Purging Equipment	Pump	
Pump Type	Grundfos	
Purging Method	2 Casings	
Casing Volume ()		
Calculated Casing Volumes Purge Duration ()		
pH Buffer 7.0	7.0	
pH Buffer 4.0	4.0	
Specific Conductance (micromhos)	1000	

Nitrate Quarterly		
2021 Q2 Nitrate		

Sampler	TH/DL
---------	-------

Weather Conditions		
External Ambient Temperature ()		
Previous Well Sampled	N/A	

Well Depth (ft)	
Well Casing Diameter ()	
Depth to Water Before Purging (ft)	

Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Dissolved Oxygen (%)	Before/After
5/25/2021 7:14		17.3	7.85	20.18	445	0	45.9	

Volume of water purged () Pumping Rate Calculations Flow Rate (Q = S/60) ()

	Time to evacuate 2 Casing Volumes ()
Final Depth to Water (feet)	Number of casing Volumes

Name of Certified Analytical Laboratory	
AWSL	

Flow Rate (Q = S/60) ()	
Time to evacuate 2 Casing Volumes ()	
Number of casing Volumes	
Volume, if well evacuated to dryness ()	0

Analytical Samples Information

	Sample		Container		Container			Pres	ervative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?		
Chloride	Υ	WATER	1	500-mL Poly	U	None	N		
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ		

Comments:

DI sample collected in the lab at 0715.

Signature of Field Technician

Durrer Holliday

Location ID	TW4-60		
Field Sample ID	TW4-60_06092021		
Purge Date & Time	6/9/2021 9:59		
Sample Date & Time	6/9/2021 10:00		

Purging Equipment	Pump
Pump Type	Grundfos
Purging Method	2 Casings
Casing Volume ()	
Calculated Casing Volumes Purge Duration ()	
pH Buffer 7.0	7.0
pH Buffer 4.0	4.0
Specific Conductance (micromhos)	1000

Sampling Program	Chloroform Monitoring		
Sampling Event	2021 Q2 Chloroform		

Sampler	TH/DL

Weather Conditions	Sunny	
External Ambient Temperature (C)	25	
Previous Well Sampled	TW4-40	

Well Depth (ft)	
Well Casing Diameter ()	
Depth to Water Before Purging (ft)	

0

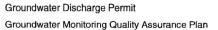
							Dissolved	
Date/Time	Gallons Purged	Conductivity (umhos/cm)	pH (pH Units)	Temp (deg C)	Redox (mV)	Turbidity (NTU)	Oxygen (%)	Before/After
6/9/2021 9:59		1.9	8.50	24.40	300	0.3	79.0	

Pumping Rate Calculations

Volume of water purged ()	Flow Rate (Q = S/60) ()
	Time to evacuate 2 Casing Volumes ()
Final Depth to Water (feet)	Number of casing Volumes
	

Final Depth to Water (feet)	Number of casing Volumes
	Volume, if well evacuated to dryness ()
Name of Certified Analytical Laboratory	

Analytical Samples Information


	Sample		Container			Preservative	
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?
VOCs-Chloroform	Υ	WATER	3	40ml VOA	U	HCl (pH<2), 4 Deg C	Υ
Chloride	Y	WATER	1	500-mL Poly	U	None	N
Nitrate/nitrite as N	Y	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ

Comments:

AWSL

Di Sample was collected in the lab at 1000.

TWN-65

Field Sample ID		TWN-65_05252021		Sampling Event		20	21 Q2 Nitrate	
Purge Date & Time								
Sample Date & Time 5/25/2021 8:11]	Sampler			TH/DL	
Purging Equipment				Weather Condition	ns			
Pump Type			7	External Ambient	Temperature ()			
Purging Method			7	Previous Well Sam	npled			
Casing Volume ()			1					
Calculated Casing Volu	mes Purge Duration ()		7					
pH Buffer 7.0			1	Well Depth (ft)				
pH Buffer 4.0			1	Well Casing Diame	eter ()			
Specific Conductance ()]	Depth to Water Be	fore Purging (ft)				
							Dissolved	
Date/Time	Gallons Purged	Conductivity	pН	Temp	Redox	Turbidity	Oxygen	Before/Aft

Sampling Program

	acinono i digot	- Conductivity		тотпр	подож	Turbiany	- Oxygon	Dololoration
			Pumping R	ate Calculations				
Volume of water purged ()			Flow Rate (Q = S/60) ()				
			Time to eva	cuate 2 Casing Vol	umes ()			
Final Depth to Water (feet)			Number of o	casing Volumes				
			Volume, if w	vell evacuated to dr	yness ()			
Name of Certified Analytics	al Laboratory							

Analytical Samples Information

	Sample		Container		Container		Container		rvative
Type of Sample/Analysis	Collected?	Matrix	Number	Туре	Sample Filtered?	Туре	Added?		
Chloride	Υ	WATER	1	500-mL Poly	U	None	N		
Nitrate/nitrite as N	Υ	WATER	1	250-mL HDPE	U	H2SO4 (pH<2), 4 Deg C	Υ		

Comments:

AWSL

Location ID

Duplicate of TWN-18

Tab C

Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Weekly, Monthly and Quarterly Depth to Water Data

Name: Tanner Holliday, Deen Lyman

Date: 6/24/2021

Date	Time	Well	Depth to Water (ft.)	Date	Time	Well	Depth to Water (ft.)	Date	Time	Well	Depth to Water (ft.)
6/24/2021	915	MW-01	64.84	6/24/2021	957	MW-04	81.89	6/24/2021	910	PIEZ-01	67.19
6/24/2021	702	MW-02	109.63	6/24/2021	951	TW4-01	105.14	6/24/2021	905	PIEZ-02	46.00
6/24/2021	803	MW-03A	84.00	6/24/2021	1004	TW4-02	111.21	6/24/2021	1010	PIEZ-03A	57.45
6/24/2021	716	MW-05	108.29	6/24/2021	1010	TW4-03	64.58	6/24/2021	924	PIEZ-04	67.23
6/24/2021	855	MW-11	85.28	6/24/2021	940	TW4-04	85.35	6/24/2021	927	PIEZ-05	65.94
6/24/2021	712	MW-12	109.68	6/24/2021	1017	TW4-05	71.99	6/24/2021	1024	TWN-01	69.12
6/24/2021	746	MW-14	101.98	6/24/2021	936	TW4-06	79.08	6/24/2021	1037	TWN-02	68.47
6/24/2021	834	MW-15	105.41	6/24/2021	954	TW4-07	82.25	6/24/2021	1014	TWN-03	42.61
6/24/2021	809	MW-17	72.05	6/24/2021	1001	TW4-08	86.58	6/24/2021	1007	TWN-04	62.07
6/24/2021	913	MW-18	73.80	6/24/2021	1020	TW4-09	69.93	6/24/2021	913	TWN-06	80.56
6/24/2021	908	MW-19	65.98	6/24/2021	1023	TW4-10	69.38	6/24/2021	922	TWN-07	80.76
6/24/2021	651	MW-20	88.28	6/24/2021	1007	TW4-11	89.50	6/24/2021	901	TWN-14	59.49
6/24/2021	639	MW-22	66.27	6/24/2021	834	TW4-12	55.79	6/24/2021	857	TWN-16	47.80
6/24/2021	708	MW-23	113.92	6/24/2021	841	TW4-13	56.80	6/24/2021	1004	TWN-18	62.39
6/24/2021	656	MW-24A	111.25	6/24/2021	845	TW4-14	77.36	6/24/2021	851	TWN-19	53.97
6/24/2021	653	MW-24	110.13	6/24/2021	1026	TW4-16	73.71	6/24/2021	931	TWN-20	77.93
6/24/2021	918	MW-25	81.14	6/24/2021	1022	TW4-18	73.00	6/24/2021	927	TWN-21	79.24
6/24/2021	1029	MW-26	85.71	6/24/2021	1044	TW4-19	72.37	6/24/2021	748	DR-05	83.14
6/24/2021	634	MW-27	57.89	6/24/2021	1030	TW4-21	74.85	6/24/2021	744	DR-06	94.03
6/24/2021	640	MW-28	74.58	6/24/2021	1038	TW4-22	68.88	6/24/2021	735	DR-07	92.03
6/24/2021	648	MW-29	107.20	6/24/2021	914	TW4-23	75.66	6/24/2021	738	DR-08	51.27
6/24/2021	900	MW-30	75.16	6/24/2021	1042	TW4-24	66.32	6/24/2021	735	DR-09	86.55
6/24/2021	906	MW-31	69.26	6/24/2021	1033	TW4-25	69.90	6/24/2021	732	DR-10	78.39
6/24/2021	910	MW-32	82.04	6/24/2021	933	TW4-26	73.92	6/24/2021	757	DR-11	97.91
6/24/2021	730	MW-33	DRY	6/24/2021	821	TW4-27	79.04	6/24/2021	800	DR-12	91.88
6/24/2021	844	MW-34	107.38	6/24/2021	836	TW4-28	49.21	6/24/2021	808	DR-13	69.68
6/24/2021	723	MW-35	112.42	6/24/2021	823	TW4-29	78.37	6/24/2021	727	DR-14	76.19
6/24/2021	726	MW-36	110.55	6/24/2021	829	TW4-30	75.06	6/24/2021	648	DR-15	92.82
6/24/2021	839	MW-37	106.65	6/24/2021	831	TW4-31	76.24	6/24/2021	724	DR-17	64.65
6/24/2021	642	MW-38	70.27	6/24/2021	838	TW4-32	56.30	6/24/2021	708	DR-19	63.24
6/24/2021	644	MW-39	64.70	6/24/2021	819	TW4-33	78.09	6/24/2021	706	DR-20	55.38
6/24/2021	814	MW-40	79.81	6/24/2021	825	TW4-34	76.61	6/24/2021	700	DR-21	100.61
				6/24/2021	827	TW4-35	75.35	6/24/2021	714	DR-22	DRY
MW-26 = T	W4-15			6/24/2021	843	TW4-36	58.15	6/24/2021	703	DR-23	70.45
MW-32 = T	W4-17			6/24/2021	1035	TW4-37	73.17	6/24/2021	711	DR-24	44.52
Comments:				6/24/2021	1013	TW4-38	59.95				
				6/24/2021	1032	TW4-39	75.30				
				6/24/2021	930	TW4-40	72.13				
9				6/24/2021	947	TW4-41	89.71				
				6/24/2021	817	TW4-42	69.70				

Date 4-5-21

Name Deen Glyman, Tanner Hollich

No Meter Sales Flow Sales No Meter Sales No Meter Sales Sales No Meter Sa	Ti	me Well	Depth*	Comments	System Operational (If no not any problems/corrective actions
Meter \$8,625,38,99 Yes No No No Meter 56,846,94 Yes No No Meter 56,846,94 Yes No No Meter 56,846,94 Yes No Meter 26,711,73,7 Yes No Meter 26,711,73,7 Yes No No Meter 26,711,73,7 Yes No No Meter 26,711,73,7 Yes No No Meter 15,211,0,3 Yes No No Meter 75,211,0,3 Yes No Meter 75,211,0,3 Yes No No Meter 54,159,36 Yes No Meter 54,159,36 Yes No No Meter 54,159,36 Yes No No Meter 78,568,44 Yes No Yes No No No No No Yes No No No No No No No No	09	13 MW-4	82.50		
MW-26			V	Meter \$862538.99	
1050 TW4-19 Gq. 30 Flow IG.D Yes No	085	MW-26	72,88	Flow 16.0	
Meter 2671173.7 Mess No NA TW4-20 NA Flow NA Yes Mess Meter NA Yes Mess Meter NA Yes Mess Meter 752110.3 Yes No Meter 755631.4 Yes No Meter 755631.4 Yes No Meter 7576.5 Yes No Meter 7576.5 Yes No Meter 7576.5 Yes No Meter 757311.3 Yes No Meter 7573111.3 Yes No Meter 7573111.3 Yes No				- Williams	Yes No
NA TW4-20 NA Flow NA Yes Mass No	105	0 TW4-19	69.30	1000	
Meter NA Yes No	<u></u>				XES No
Oq30 TW4-4 Q0.72 Flow 16.8 West No Meter 75.21 10.3 West No Meter 75.21 10.0 West No Meter 54.15 15.0 West No Meter 54.15 15.3 West No Meter 785 684.4 West No Meter 785 684.4 West No Meter 16.16 16.5 6.9 West No Meter 16.16 16.5 6.9 West No Meter 16.16 16.5 6.9 West No Meter 7789 29.73 West No Meter 3588 94.6 West No Meter 433758.8 West No Meter 433758.8 West No Meter 433758.8 West No Meter 2593240.80 West No Meter 25932	AN	TW4-20	NA	140	Yes Man
Meter 752110.3 Meter No				Meter NA	Yes Ma
Meter 752 10.3 Mess No	093	o TW4-4	90.72	1.0.1.0	Yes No
Meter 54/59.36 Yes No				Meter 752110.3	•
Meter 54/59.36 Meter No	082	TWN-2	58,12	Flow 16.0	¥es⇒ No
Meter 785684.4 Meter 785684.4 Meter 785684.4 Meter 785684.4 Meter 1616055.69 Meter 778929.73 Meter 778929.73 Meter 778929.73 Meter 778929.73 Meter 358894.6 Meter 358894.6 Meter 35758.8 Meter 433758.8 Meter 433758.8 Meter 433758.8 Meter 2195.12 Meter 2195.12 Meter 2195.12 Meter 2593240.80 Meter 2593240.80 Meter 1788809.8 Meter 788809.8 Meter 798809.8 Meter 7				Meter 54159.36	
Meter 785684.4 Meter No	0835	TW4-22	(9.11	Flow 16 4	Yes No
TW4-24	N. Q.		W-13.3		
Meter		T\M/4-24			
TW4-25	0829	1 44-24	68,66	11.	
Meter 778929.73 Mess No 0918 TW4-1 96.44 Flow 12.8 Mess No Meter 358894.6 Mess No 0908 TW4-2 93.14 Flow 16.4 Mess No Meter 433758.8 Mess No Meter 2195.12 Mess No Meter 2195.12 Mess No Meter 2593240.80 Mess No Meter 2593240.80 Mess No 0840 TW4-37 66.08 Flow 18.0 Mess No Meter 1957314.3 Mess No Meter 738809.8 Mess No Meter 738809.8 Mess No Meter 748809.8 Mess No Meter 748809.8 Mess No Meter 74581.31 Mess No Meter 7		TIMA		PI.	
19 19 19 19 19 19 19 19	0815	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1000	I I I	
Meter 358894.6 Meter 358894.6 Meter 358894.6 Meter 433758.8 Meter 433758.3 Meter 433758.3 Meter 433758.3 Meter 438809.8 Meter 438809.8 Meter 438809.8 Meter 438809.8 Meter 438809.8 Meter 43581.3 Mete		7444			
70908 TW4-2 93.14 Flow 16.14 YES NO Meter 433758.8 YES NO Meter 2195.12 YES NO Meter 2195.12 YES NO Meter 2593240.80 YES NO Meter 1957314.3 YES NO Meter 788809.8 YES NO	0918	11004-7	1	14.1	
Meter 433758.8 Meter 433758.8 Meter 433758.8 Meter 2195.12 Meter 2195.12 Meter 2593240.80 Meter 2593240.80 Meter 2593240.80 Meter 1957314.3 Meter 1957314.3 Meter 1957314.3 Meter 1958809.8 Meter 198809.8				Weter 358894.6	No No
TW4-11 R9.90 Flow 14.0 Yes No	0908	TW4-2		- IMI	Yes No
Meter 2195.12 Meter 2195.12 Meter 2195.12 Meter 2593240.80 Meter 2593240.80 Meter 2593240.80 Meter 1957314.3 Meter 1957314.3 Meter 1957314.3 Meter 19581.31		1		Meter 433758.8	Yes No
Meter 2195.12 Meser No No No Meter 2593240.80 Meter 2593240.80 Meter 2593240.80 Meter 2593240.80 Meter 1957314.3 Meser No Meter 1957314.3 Meser No Meter 788809.8 Meser No Meter 788809.8 Meser No Meter 745581.31 Meser No	0900	TW4-11	89.90	Flow 16.0	Yes No
Meter 2593240.80 Meter 2593240.80 Meter 2593240.80 Meter 1957314.3 Meter 1957314.3 Meter 1957314.3 Meter 788809.8 Meter 788809.8 Meter 788809.8 Meter 745581.3\ Meter				Vieter 2195.12	
Meter 2593240.80 Meter 2593240.80 Meter 2593240.80 Meter 1957314.3 Meter 1957314.3 Meter 1957314.3 Meter 788809.8 Meter 788809.8 Meter 788809.8 Meter 745581.3\ Meter	ond	TW4-21	7/ 27	Flow 16.2	Vere No
7840 TW4-37	<i>bUO</i>				
Meter 1957314.3 No 1846 TW4-39 71.20 Flow 18.0 Meter 788809.8 PART TW4-40 72.09 Flow 18.0 Meter 745581.3\ 1925 TW4-41 88.88 Flow 6.0 Meter 6.0		TM4 27			
1846 TW4-39 71.20 Flow 18.0 Yes No Meter 788809.8 Yes No No Meter 745581.3\	2840	144-37			
Meter 788809.8 YES No 940 TW4-40 72.09 Flow 18.0 YES No Meter 745581.3\ YES No 925 TW4-41 88.88 Flow 6.0 YES No	94/	TW4-39			
940 TW4-40 72.09 Flow 18.0 YES No Meter 745581.3\ YES No YES No	20-10			4 .	
Meter 745581.3\ YES No 925 TW4-41 88.88 Flow 6.0 YES No	QHA	TW4-40		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
925 TW4-41 88.88 Flow 6.0 YES No					
	925	TW4-41	88.88 F		

Operational Problems	(Please lis	t well	number):
-----------------------------	-------------	--------	--------	----

Abandoned

^{*} Depth is measured to the nearest 0.01 feet.

Date 4-12-21

Name Deen & Lyman, Tanner Holliday

Tim	ie Well	Depth*	Comments	System Operational (If no not any problems/corrective actions)
100	o MW-4	81.76	Flow 4.0	Yes No
			Meter 2869762.32	₩ No
092	5 MW-26	78.88	Flow 16.0	Yes No
			Meter 570637.1	YES No
1125	TW4-19	72.09	Flow 16.0	¥es No
			Meter 2682899.0	¥ No
NA	TW4-20	NA	Flow NA	Yes No
			Meter NA	X No
1016	TW4-4	88.40	Flow 15.6 -	Yes No
			Meter 753299.8	Yes No
0839	TWN-2	59.21	Flow 16.4	Yes No
			Meter 55936.67	Yes No
0854	TW4-22	65,18	Flow 16.4	¥⇔ No
			Meter 787421.9	¥ee No
0846	TW4-24	66.42	Flow 12.4	Yes No
W76	1	1010.72	Meter 1620296.78	Yes No
0829	TW4-25	(0.40		
7829	1111720	69.80	Meter 785229,37	¥æs No ¥æs No
005	TW4-1		Flow 12.8	Yes No
003		125126	Meter 3595 70.3	Visa No
20-2	TW4-2	01 27		
1453	1117-2		Meter 434759.5	Yes No
- 10	T)/// 11			
948	TW4-11		Meter 2229.25	YESS No
				Yes No
820	TW4-21		Flow 16.0	Yees No
			Meter 2600796.90	Yass No
900	TW4-37		low 18.0	Yes No
			Meter 1961998.3	No No
120	W4-39		low 17.4	Xee No
-	WA 40		Meter 790544.3	No No
22 1	W4-40		low 18.0	Yes No
,, T	W4-41		Meter 75/192.36	No No
11 11			leter 33/6/6/8.13	Xess No

Operational Problems (Please list well number):

Abanclancol

^{*} Depth is measured to the nearest 0.01 feet.

Monthly Depth Check Form

Date	4-13-21	_	Name D	leen Glyman,	Tanner Holliday			
Time	Well	Depth*	Time	Well	Depth*			
1000	MW-4	81.76	0735	<u>TWN</u> -1	68.75			
1005	TW4-1	102.62	0839	TWN-2	59.21			
0953	TW4-2	91.33	0749	TWN-3	43.08			
0721	TW4-3	64.03	0745	TWN-4	61.65			
1016	TW4-4	88.40	0757	TWN-7	80.50			
0725	TW4-5	71.54	0753	TWN-18	62.07			
1430	TW4-6	78.83	0800	MW-27	57.38			
1433	TW4-7	82.25	0730	MW-30	74.88			
1437	TW4-8	86.58	0808	MW-31	68.91			
1445	TW4-9	69.68						
0718	TW4-10	68.91						
0948	TW4-11	90.65						
1407	TW4-12	55.55						
1404	TW4-13	56.61	1411	TW4-28	48.91			
1355	TW4-14	77.33	1351	TW4-29	78.15			
0925	TW4-15	78.88	1339	TW4-30	74.96			
0715	TW4-16	73.35	1335	TW4-31	76.21			
1170	TW4-17	81.413	1415	TW4-32	55.97			
0738	TW4-18	12.59	1327	TW4-33	_77.86			
1125	TW4-19	72.09	1347	TW4-34	76.41			
NA	TW4-20	NA	1343	TW4-35	75.25			
0820	TW4-21	76.15	1359_	TW4-36	57,97			
0854	TW4-22	65.18	0900	TW4-37	66.01			
1426	TW4-23	75.35	1441	TW4-38	59.72			
0846	TW4-24	66.42	0920	TW4-39	72.28			
0829	TW4-25	69.80	1022	TW4-40	72.15			
1422	TW4-26	73,59	1011	TW4-41	89.12			
1331	TW4-27	78.91	1323	TW4-42	69.43			
	Comments: (Please note the well number for any comments)							
		-						

^{*} Depth is measured to the nearest 0.01 feet

Date 4-19-21

Name Deen G Lyman, Tonner Holliday

Tie	ne Well	Depth*	Comments	System Operational (If no not any problems/corrective actions)
132	6 MW-4	81.93	Flow 4,0	× No
		0,1,1,2	Meter 2878024.29	₩ No
105	0 MW-26	73.17	Flow 16.0	Yes No
			Meter 5 7 2 9 5 2 .1	Yes No
141	7W4-19	69.81	Flow 16.0	Yes No
			Meter 2691373.7	Xee No
N	A TW4-20	NA	Flow NA	Yes 🐸
			Meter NA	Yes 👆
1349	TW4-4	79.77	Flow 17.0	Yes No
			Meter 754441.7	¥ No
1018	TWN-2	58.40	Flow 16.4	Yes No
			Meter 57726.96	YES NO
1031	TW4-22	66.22	Flow 17.8	Yes No
			Meter 789/68.2	¥ No
1024	TW4-24	71.48	Flow 14.8	Yes No
			Meter 1624455.96	Yes No
1015	TW4-25	69.13	Flow 10, 2	¥⇔ No
			Meter 791756.24	¥⇔ No
1332	TW4-1	104.22	Flow 12.8	Yes No
			Meter 360252.7	Yes No
1321	TW4-2	102.19	Flow 16.4	¥œ No
			Meter 435906.0	View No
1315	TW4-11		Flow 14.6	Yas No
			Meter 2470.23	¥ No
1003	TW4-21	75.80	Flow 16.4	X No
003			Meter 2608121.84	No No
	TW4-37		-1	
038	1114-01		Meter 1966426.6	Yes No
045	TW4-39		Flow 18.0	Yesa No
			Meter 7932427	No No
353	TW4-40 ,	10010	Flow 18.0	Yes No
	1		Meter 75 74 57.82	Yes No
338	TW4-41		low 6.0	Yes No
			Meter 337879.54	¥⇒ No

Operational Problems	(Please	list well	number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 4-26-21

Name Deen Gryman, Tanner Holling

Tir	me Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
09	58 MW-4	81.87	Flow 4, b	Ves No
		41	Meter 2884066.06	Yes No
093	37 MW-26	73.43	Flow 16.0	Yes No
			Meter 575/86.7	¥es No
113	R TW4-19	70.15	Flow 16.4	Yes No
_			Meter 2705828.4	No No
NA	TW4-20	NA	Flow NA	Yes 🖶
_			Meter NA	Yes 🐸
102	o TW4-4	78.13	Flow 17.6 -	Yes No
-	_		Meter 755459.4	Yes No
090	3 TWN-2	64.31	Flow 16.8	¥æ No
			Meter 59506.95	Yes No
0910	TW4-22	69.50	Flow 17.8	Yes No
			Meter 790897.5	Yes No
0910	TW4-24	71.88	Flow 18.0	Yes No
			Meter 1428509.94	Yes No
0855	TW4-25	69.17	Flow 10.6	Yes No
			Meter 797722.98	No No
1005	TW4-1	101111	Flow 12.8	Xes No
			Meter 340822.0	Yes No
0951	TW4-2	107.66	Flow 16.4	Yes No
			Meter 436736.6	No No
0944	TW4-11	90.33	Flow 15. 6	Yes No
			Meter 2595.37	Y⇔ No
0849	TW4-21	74.40	Flow 16.4	¥€€ No
			Meter 2615663	Yess - No
2923	TW4-37		Flow 18.0	Yes No
7,23			Meter 1971092.7	Yes No
2930	TW4-39	73.90 F	low 18,0	Yes No
			Meter 796944.3	No No
030	TW4-40		low 18.0	Yes No
	TM 4.44		Meter 762025.29	Xes No
012	TW4-41		Neter marzes (a)	No No
			Meter 338758.63	₩ No

Operational Problems (Please list well number):

Twy-20' Abandoned

^{*} Depth is measured to the nearest 0.01 feet.

Date 5-3-21

Name Teen Chyman, Topper Halliday

Tim	e Well	Depth*	Comments	System Operational (If no no any problems/corrective actions
1009	- MW-4	81.88	Flow 4.0	Yes No
*			Meter 2891106.81	¥€S No
094	MW-26	78.62	Flow 16.0	Xes No
			Meter 577396.1	No No
1400	TW4-19	72.09	Flow 16.0	¥ No
			Meter 2717580,9	No No
NA	TW4-20	NA	Flow NA	Yes 👪
			Meter NA	Yes 🐸
1025	TW4-4	85.44	Flow 17.4	No No
			Meter 756412.2	Yes No
סופמ	TWN-2	59.21	Flow 16.0	Yes No
			Meter 6/355.60	YES No
0922	TW4-22	71.33	Flow \ 8.0	¥≅ No
			Meter 742635.5	No No
0916	TW4-24			
0416	1 11 7 2 7	74.14	Meter 1692634.17	Yes No
	TW4-25			
1000	1 444-25	69.80	How 10.4 Meter 804036,88	V∰ No
212	TW4-1		Flour	
012	1444-1		Meter 361509.0	Yes No
	TA 4 0		P1.	
1956	1 VV 4-2	1-1-1-1-1-1-1	Flow 14.2 Meter 4267310	No No
=			121161,0	Xee No
1949	ΓW4-11		Flow 12.8	¥€® No
			Meter 2627.87	No No
855	TW4-21	75.45	Flow 16.4	¥se- No
		I	Meter 2623084.//	¥es No
928 7	W4-37	67.77	low 18.0	¥ No
1200			Meter 1975633.7	No No
934 T	W4-39	74.53 F	low 18.0	Yase No
			Meter 798410.3	¥⇒ No
32 T	W4-40		low 18.0	Yes No
	77.42		Meter 161237.00	¥€ No
18 T	W4-41		low 6.0	No
		IN	leter 339774,21	₩ No

Operational	Problems	(Please	liet woll	number).
Operational		ILICASE	nol Men	HUHHDEI J.

^{*} Depth is measured to the nearest 0.01 feet.

Date 5-10-21

Name Deen Glyman, Topser Holliday

1240 MW-4	Ti	me Well	Depth'	Comments	System Operational (If no note any problems/corrective actions)
Meter 2893328.52 Yes No	124	10 MW-4		TE.	
Meter 579501.2 Mess No					
Meter 579501.2 Mess No	102	O MW-26	80.70	Flow 16.0	Xes No
Meter 2729087.0 Meter No NA TW4-20 NA Flow NA Yes Meter NA Yes NO				Meter 579501.2	
NA TW4-20 NA Meter NA Yes NA Yes NA Meter NA Yes NA Meter NA Yes NA Yes NA Meter NA Yes NA Yes NA Meter NA Yes	131	o TW4-19	73.69	1,00,0	¥æ No
Meter NA				Meter 2729087.0	¥es No
12.55 TW4-4	NA	TW4-20	NA	Flow NA	Yes No
Meter 757573.\ Mess No O941 TWN-2 G0.15 Flow IG.O Meter G3086.56 Mess No O957 TW4-22 71.36 Flow IG.O Mess No O950 TW4-24 70.89 Flow IG.H Mess No O932 TW4-25 72.112 Flow IG.H Mess No O932 TW4-25 72.112 Flow IG.H Mess No I245 TW4-1 I04.99 Flow I2.8 Mess No I040 TW4-2 I02.85 Flow IG.H Meter 438700.5 Meter 438700.5 Meter 2745.GO Meter 2745.GO Meter 2745.GO Meter 2745.GO Meter 2745.GO Meter 30.478.73 Mess No I006 TW4-37 G9.20 Flow I3.O Meter 80.156.5 Mo I014 TW4-39 74.91 Flow I3.O Meter 90.156.5 Mo I300 TW4-40 82.03 Flow I3.O Meter 772487.30 Mess No I250 TW4-41 83.10 Flow I3.O Meter 772487.30 Mess No I250 TW4-41 83.10 Flow I3.O Meter 772487.30 Mess No I250 TW4-41 83.10 Flow I3.O Meter 772487.30 Mess No I250 TW4-41 83.10 Flow I3.O Meter 772487.30 Mess No I250 TW4-41 83.10 Flow I3.O Meter 772487.30 Mess No I350 TW4-41 83.10 Flow I3.O Meter 772487.30 Mess No I350 TW4-41 83.10 Flow I3.O Meter 772487.30 Mess No I350 TW4-41 83.10 Flow I3.O Meter 772487.30 Mess No I350 TW4-41 83.10 Flow I3.O Mess No I350 TW4-41 I33.10 Flow I3.O Mess No I350 TW4-41 I04.41 I04	J			Meter NA	Yes 🔩
Meter 157573.\ Mess No	125	5 TW4-4	87.27	Flow 14.8	No No
Meter & 3086, 56 Meter & 38700, 5 Meter & 30870, 73 Meter & 3087				Meter 757573.1	
Meter 6 30 8 6. 5 6	094	/ TWN-2	60.15	Flow 16.0	¥œ No
Meter 794373.7				Meter 63086,56	
Meter 794373.7 Meso No 0950 TW4-24 70.99 Flow 16.4 Meter 1636779.2 Meso No 0932 TW4-25 72.12 Flow 10.4 Meso No 1245 TW4-1 104.99 Flow 12.8 Meso No 1040 TW4-2 102.85 Flow 16.4 Meter 438700.5 Meso No 1030 TW4-11 90.60 Flow 12.8 Meso No 1030 TW4-21 74.83 Flow 17.2 Meso No 1006 TW4-37 69.20 Flow 13.0 Meter 2630478.73 Meso No 1014 TW4-39 74.91 Flow 13.0 Meter 30.05	095	7 TW4-22	71.36	Flow 16.0	Xee No
TW4-24					
Meter	005	TW4-24	70.99	1=1	Ves No
0932 TW4-25	095	1	10.84	1.00	
Meter \$10437.34	0025	TW4-25	70.12		
1245 TW4-1	093	1111720	12110		
Meter 362294.9 No No No No No No No N	1245	TW4-1	104 99		
1040 TW4-2	10.12		10401	1010	
Meter 438700.5 No No No No Meter 2745.60 No No No Meter 2745.60 No No Meter 2630478.73 No Meter 2630478.73 No Meter 2630478.73 No Meter 2630478.73 No Meter 2630478.73 Meter 2630478.	10110	TW4-2	101 85		
1030 TW4-11	1040	1111-2	102.75	140	
Meter 2745,60		T\\/_11	00.40		
0926 TW4-21 74.83 Flow 17.2 Yes No 1006 TW4-37 69.20 Flow 18.0 Yes No 1014 TW4-39 74.91 Flow 18.0 Yes No 1300 TW4-40 82.03 Flow 18.0 Yes No 1250 TW4-41 89.10 Flow 6.0 Yes No	1030	1144-4-11	90.60		
Meter 2630478.73 See No 1006 TW4-37 69.20 Flow 18.0 See No No Meter 1980156.5 No No Meter 80196.81 See No No Meter 80196.81 See No No Meter 772487.30 See No No Meter 772487.30 See No No No Meter 772487.30 See No No No No No No No No		TW4 04		FL	
1006 TW4-37 69.20 Flow 18.0 See No Meter 1980156.5 No Meter 80196.81 No Meter 90196.81 No Meter 772487.30 No Meter 772487.30 No Meter 772487.30 No No Meter 772487.30 No No No Meter 772487.30 No	0926	1W4-21			
Meter 980 56.5 No No No Meter 80 96.8 No No Meter 80 96.8 No Meter 772 487.30 Meter No No No No Meter 772 487.30 Meter No No No No Meter 772 487.30 Meter No No No Meter 772 487.30 Meter No No No Meter 772 487.30 Meter No No Meter No No Meter No M					ESS NO
1014 TW4-39 74.91 Flow 18.0 See No Meter 80196.81 See No No Meter 772487.30 See No	1006	TW4-37			
Meter 80 96.81		TM/4 20			
1300 TW4-40 82.03 Flow 18.0 See No Meter 772487.30 No No	1014	1 774-39		THE MANAGEMENT OF THE PARTY OF	
Meter 772487.30 No No 1250 TW4-41 89.10 Flow 6.0 No	1200	TW4-40		part .	
1250 TW4-41 89.10 Flow 6.0	טטכו	. 1, 1 10			
Meter 340798.86 *** No	1250	TW4-41		PD 1	

Operational Problems (Please list well number):

Abandoned

^{*} Depth is measured to the nearest 0.01 feet.

Monthly Depth Check Form

Date 5	-12-21		Name Deen & Lyman Tanner Holling			
			•		/	
<u>Time</u>	Well	Depth*	<u>Time</u>	Well	Depth*	
0943	MW-4	81.51	1425	TWN-1	68.86	
0948	TW4-1	108.17	0846	TWN-2	59.20	
0936	TW4-2	111.92	0700	TWN-3	43.25	
1337	TW4-3	64.18	0705	TWN-4	61.75	
1005	TW4-4	90.91	0715	TWN-7	80.43	
13.29	TW4-5	74.63	1445	TWN-18	62.19	
1357	TW4-6	78.75	1440	MW-27	57.56	
1341	TW4-7	82.10	1413	MW-30	74.88	
1344	TW4-8	86.35	1408	MW-31	6903	
1326	TW4-9	71.63				
1321	TW4-10	69.05	8			
0931	TW4-11	89.44				
1427	TW4-12	55,74				
1423	TW4-13	56.75	1431	TW4-28	49.08	
1018	TW4-14	77.44	1015	TW4-29	78.35	
0920	TW4-15	90.85	1005	TW4-30	75.11	
7401	TW4-16	73,42	1002	TW4-31	76.29	
1404	TW4-17	91.69	1434	TW4-32	56.18	
1422	TW4-18	72.69	0954	TW4-33	78.02	
1025	TW4-19	72.65	1011	TW4-34	76.64	
NA	TW4-20	NA	1008	TW4-35	75.40	
0826	TW4-21	75.65	1021	TW4-36	58.03	
0859	TW4-22	66.70	0906	TW4-37	67.91	
1348	TW4-23	75.26	1332	TW4-38	59.63	
0853	TW4-24	69.81	0913	TW4-39	75.25	
0835	TW4-25	69.13	1011	TW4-40	72.45	
1353	TW4-26	73.53	0959	TW4-41	90.03	
0958	TW4-27	79:02	0950	TW4-42	69.67	
Comme	nts: (Please	note the well r	number fo	or any comm	ments)	
		4				

^{*} Depth is measured to the nearest 0.01 feet

Date <u>5-17-21</u>

Name Teen & Lyman, Tonner Holliday

Tim	ne Well	Depth*	Comments	System Operational (If no not any problems/corrective actions
094	10.00.01	81.51	Flow 4.0	No No
		0.1.2.	Meter 2905308.25	V No
092	MW-26	90.85	Flow 16.0	Yes No
			Meter 581741.8	View No
1020	TW4-19	72.65	Flow 16.2	Yes No
			Meter 2740104,3	¥€ No
NA	TW4-20	NA	Flow NA	Yes 🖶
		_	Meter > NA	Yes 🖦
1005	TW4-4	19,09	Flow	Yan No
			Meter \$0.758518.1	Yes No
0846	TWN-2	59.20	Flow 14.2	Yes No
			Meter 64793.07	¥æ No
0859	TW4-22	66.70	Flow 16.8	Yes No
51 597 31			Meter 796119.6	¥ No
2853	TW4-24	69.81	Flow 16.0	Yes No
			Meter 1640902.22	Yes No
0835	TW4-25	69.13	Flow 10.4	No No
			Meter 816600.98	No No
948	TW4-1	108.17	Flow 12.8	¥es No
			Meter 362848.9	¥ No
936	TW4-2	111.92	Flow 16.0	Yes No
			Meter 439785.8	No No
931	TW4-11	89.44	Flow 12.8	¥œ No
			Meter 2984.08	Yess No
326	TW4-21	15.65	Flow 16.4	No No
1010			Meter 2637850.35	No
-	TW4-37		Flow 18.0	Yes No
104			Meter 1984542.5	Vas No
13 7	ΓW4-39		Flow 18.0	No No
			Meter 803382.6	¥as No
u T	TW4-40	72.45 F	low 18.0	Yes No
_	10/4 44	7=	Meter 777484.51	Yes No
59	W4-41		flow 6.0	No
			Meter 341770.12	No No

Operational Problems (Please list well number):

Abandened

^{*} Depth is measured to the nearest 0.01 feet.

Date <u>5-24-21</u>

Name , Deen Colyman, Tanner Halliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
0912	MW-4	81.79	Flow 4.0	XIII No
			Meter 2912328.99	No No
0840	MW-26	72.72	Flow 16.0	Yes No
			Meter 583921.3	¥⇔ No
1045	TW4-19	73.19	Flow 16.4	Yes No
			Meter 2751877.3	¥es- No
NA	TW4-20	NA	Flow NA	Yes Ma
			Meter NA	Yes 👑
0932	TW4-4	81.60	Flow 16.4 -	¥⇔ No
			Meter 759540.4	Vess No
0807	TWN-2	61.66	Flow 16.0	¥es No
			Meter 66437.78	Xee No
0821	TW4-22	69.89	Flow 18.0	¥se No
			Meter 797858,7	Yes No
0816	TW4-24	70.50	Flow 16.2	¥ No
			Meter 1645048.38	Yes No
0801	TW4-25	70.13	Flow 10.4	¥œs No
			Meter #22985.85	X No
0917 7	W4-1	1/4/11	Flow 13.0	Vass No
5/3			Meter 363516.8	¥≘ No
9857 T	W4-2	109.28	Flow 16.4	Yes No
			Meter 440758.8	V⇔ No
850 T	W4-11	90.81	Flow 12.8	No No
			Meter 3005.88	Vess No
752 T	W4-21	85.88	Flow 16.0	Ves No
			Meter 26 9515211	Yes No
826 T	N4-37		Flow 18.0	Yes No
0.00			Meter 1989099.0	Yes No
834 TI	N4-39	75.55 F	Flow 18,0	¥⇔ No
			Meter 806774.4	¥æ No
PHH TV	V4-40		low 18.0	Yes No
-	VA 44		Meter 782545.96	No
126 IV	V4-41	89.18 F	low 6.0	No No

Operational Problems (Please list well number):

TW4-20 Abandoned

^{*} Depth is measured to the nearest 0.01 feet.

Date 6-1-21

Name Deen & Lyman, Tonner Halliday

Tir	ne <u>Well</u>	Depth*	Comments	System Operational (If no note any problems/corrective actions)
09	52 MW-4	81.62	Flow 4.0	¥es No
			Meter 2920504.28	No No
09:	25 MW-26	74.24	Flow 16.4	Yes No
070	3,	11.01	Meter 5865 90.0	No
114	= TW4-19	72.35		
111-4	5 1.11.10	14733	Meter 2765298.5	Yes No
NA	TW4-20	NA	Flow NA	Yes No
INA	1	- NA	Meter NA	Yes Also
100	0 TW4-4	00.10	1 1 1	
102	O I WA-A	88.15	Meter 760799,2	Yes No
	TAMALO			
084	3 TWN-2	58.08	Flow 16.0	No No
			Meter 68495,71	¥ No
0905	TW4-22	67.31	Flow 18.0	¥⇔ No
			Meter 799833.7	No No
0959	TW4-24	70.11	Flow 16, 2	₩ No
0.02		1011	Meter 1649760.53	No No
0024	TW4-25	69.40	Flow 11.0	
0837	111120	67.70	Meter 930172.35	No No
0959	TW4-1	108.67		
0454	1.004	108.61	Meter 364392.9	No No
	7344.0		-	
0945	TW4-2	110.10	Flow 14.0	No No
			Meter 44/887.6	¥ No ∖
0937	TW4-11		Flow \$ 14.8	¥⇔ No
			Meter 3359.64	No \
0824	TW4-21	73.93	Flow /6.8	> No
N V R R I			Meter 2653670.19	Yes No
0011	TW4-37		Flow 18.0	
0911	111401		Meter 1994017.6	Mos No
09/8	TW4-39		low 18.0	No No
0110			Meter 808596.8	No
1035	TW4-40		low 18.0	No No
			Meter 788144,46	Xes No
1010	TW4-41	89.99 F	low 6.0	Yes No
			Meter 343872,55	YSS No

Operational Problems (Please list well number):

Abandaned

^{*} Depth is measured to the nearest 0.01 feet.

Date 6-7-21

Name Des Chymn Tonner Halliday

Tir	ne <u>Well</u>	Depth*	Comments	System Operational (If no not any problems/corrective actions)
134	8 MW-4	81.50	Flow 4,0	Yes No
			Meter 2926770.31	No No
133	o MW-26	80.33	Flow 16.4	Yes No
			Meter 5884 20.6	No No
090	0 TW4-19	72.13	Flow 16,0	Yes No
			Meter 2776629.2	X No
NB	TW4-20	NA	Flow NA	Yes 🌭
			Meter NA	Yes Me
083	7 TW4-4	85.81	Flow 16.4	Yes No
	<u> </u>		Meter 761781,0	Yes No
1212	TWN-2	60.04	Flow 16.0	Yes No
			Meter 69914,19	¥ No
1223	TW4-22	69.69	Flow 16.2	No No
			Meter 801364.7	Yes No
1217	TW4-24	71.83	Flow 16.4	¥⇔ No
1381-1-			Meter 1653427.64	No No
1206	TW4-25	69.58	Flow 10.8	No No
			Meter x 3 5 7 7 2 . 35	No No
1355	TW4-1	102.44	Flow 12.8	¥⇔ No
			Meter 292 (364080.1)	No No
342	TW4-2	91.18	Flow 16.4	¥ No
			Meter 44 2 756.5	¥⇔ No
1336	TW4-11		Flow 14.0	¥⇔ No
			Meter 3360.26	Yase No
200	TW4-21	72.20	Flow 14.0	¥ee No
200			Meter 2660032.63	X ce No
	TW4-37	l		
229	144-01		Meter 1997965.7	Yes No
235	TW4-39		Flow 18.0	¥⇔ No
- 10			Meter 811619.0	No No
847	TW4-40	71.95	Flow 18.0	¥es No
			Meter 793177.56	No No
830	TW4-41		flow G.O	Yes No
			Meter 344850.73	Ages No

Operational Problems (Please list well number):

Abandaned

^{*} Depth is measured to the nearest 0.01 feet.

Date 6-14-21

Name Deca & Lyman

Tim	e Well	Depth*	Comments	System Operational (If no not any problems/corrective actions)
074	1	82.50	Flow 4.0	¥ss No
	•	0.55.2	Meter 2933489.84	Ves No
073	MW-26	75.23	1	¥⊜ No
		12111	Meter 590680.4	Yes No
083	0 TW4-19	72.04	Flow /6,0	No No
			Meter 2786689.9	No
NA	TW4-20	NA	Flow NA	Yes Ma
			Meter NA	Yes Mas
0800	TW4-4	80.83	Flow 16.2 -	No No
			Meter 762519.1	¥ No
0657	TWN-2	58.88	Flow 16.0	Yas No
			Meter 11667,97	¥es No
0710	TW4-22	66.64	Flow /6.6	¥ No
			Meter 803053.5	¥es No
2703	TW4-24	85,40	Flow /6,2	Yes No
			Meter 1657438.88	No
2650	TW4-25		Flow 10.8	¥⇔ No
			Meter 84/883.97	¥es No
752	TW4-1		Flow 12.8	Yes No
			Meter 3455 21.0	¥€ No
742	TW4-2	94.81	Flow 16.0	No No
			Meter 443607.3	No No
737	TW4-11	89.19	Flow 16.0	Yes No
			Meter 3483, 21	Yes No
643	TW4-21	10.28 F	Flow /6.0	Yes No
			Meter 2667139.82	Yes No
715	ΓW4-37		low 18,0	Yes No
113			Meter 2002028.9	Yes No
23 7	W4-39		low 18.0	No No
			Meter 81307.79	Yes No
19 7	W4-40		low 18.0	Yes No
-	3MA 44		Meter 797209.02	Yes No
aa T	W4-41		low 6.0 leter 345774,80	¥€ No
			113/14/01	-es- IVO

Operational Problems (Please list well number):

Abandoned

^{*} Depth is measured to the nearest 0.01 feet.

Date 6-21-21

Name Deen Glyman

Time	Well	Depth*	Comments	System Operational (If no not any problems/corrective actions)
0938	MW-4	81.77	Flow 4.0	No No
			Meter 2940646,77	Yes No
0917	MW-26	74.19	Flow 16.4	Yes No
			Meter 592815.9	No No
1140	TW4-19	69.66	Flow 16.0	X No
,,,,,,			Meter 2798861,6	Yes No
NA	TW4-20	. NA	Flow NA	Yes Me
			Meter NA	Yes de
0957	TW4-4	81.14	Flow 16.4	Xees No
<i></i>			Meter 763585.5	No No
0811	TWN-2	59.32	Flow /6.0	Yes No
		7 11 522	Meter 73370.63	No No
0856	TW4-22	68.60	Flow 16.4	
0030		68.40	Meter 804718.3	No No
	TIMA DA			- 110
0850	TW4-24	70.17	Flow 16.2 Meter 14.41680.06	No No
			, , , , , , , , , , , , , , , , , , , ,	¥€S No
2805	TW4-25	1000	Flow 10.8	No No
			Meter 848186.13	¥se No
945	TW4-1		Flow 12.8	Yess No
			Meter 366210.4	XSS No
1931 7	W4-2	108.50	Flow 16.4	Yes No
-			Meter 444600.5	No No
925 T	W4-11	89.26	Flow 14.2	Yes No
			Meter 35/2.09	No No
741 T	W4-21	71.13 F	low 16.4	¥œ No
			Meter 26745 76.22	No No
T	W4-37			
304 1	174-37		Meter 2006511.9	¥ss No
N OIS	N4-39		low /8.0	No No
10 /			Meter 818404.9	No No
OS TV	V4-40		low 18.0	Yes No
			leter 802159.31	Vas No
51 TV	V4-41		low 6.0	Yes No
']_			leter 346778.08	¥€8 No

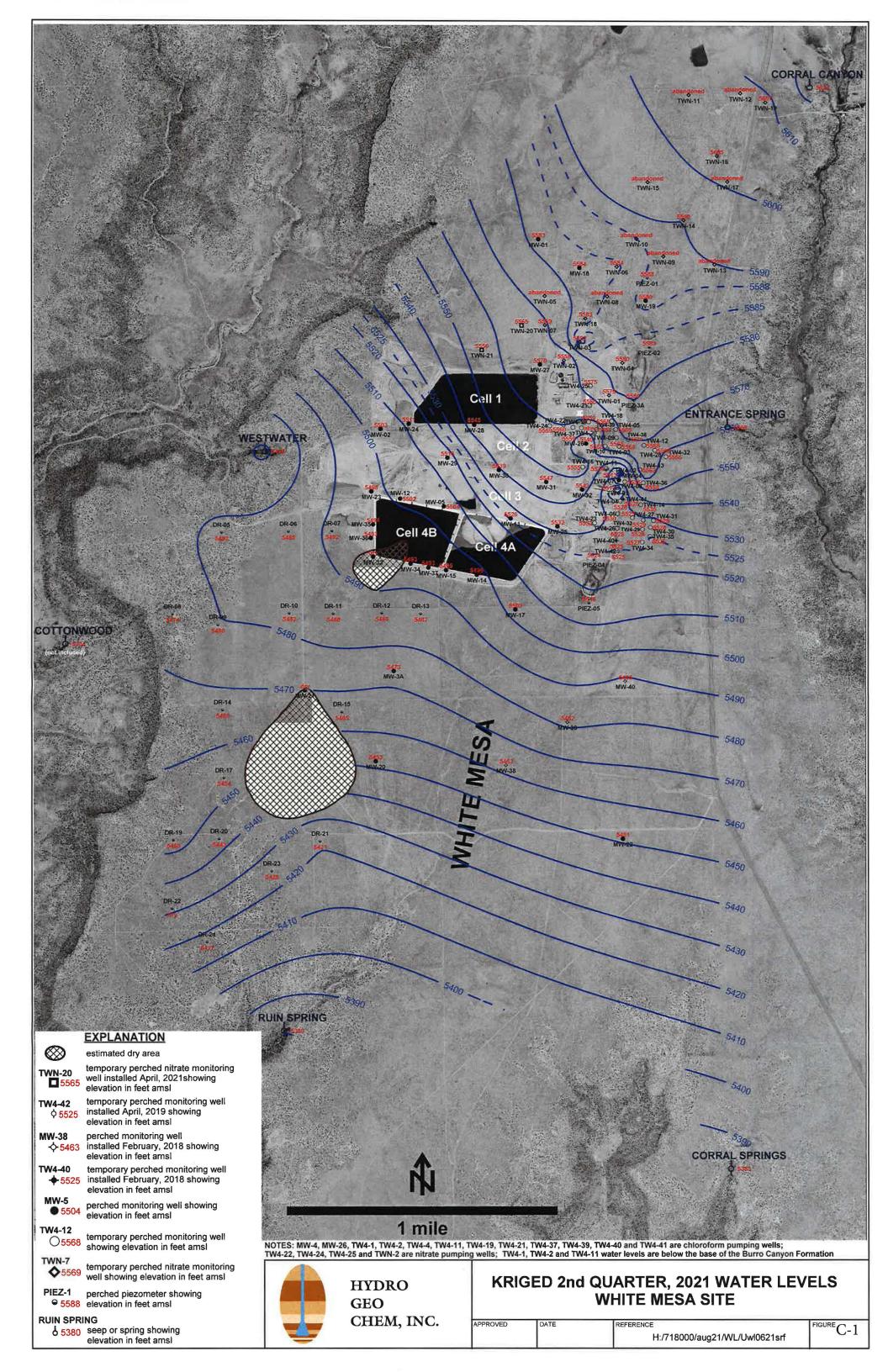
Operational Problems (Please list well number):

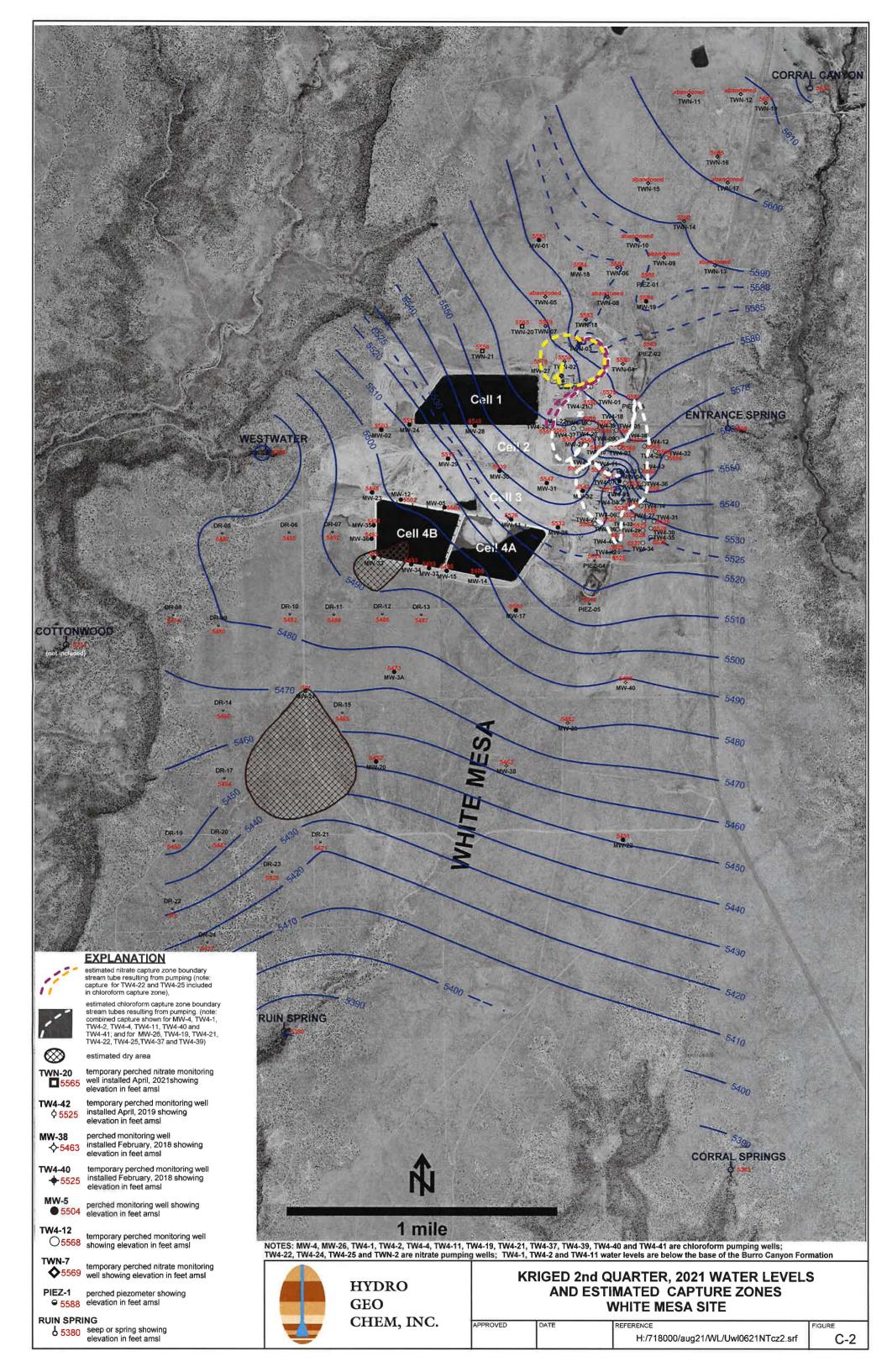
Abandoned

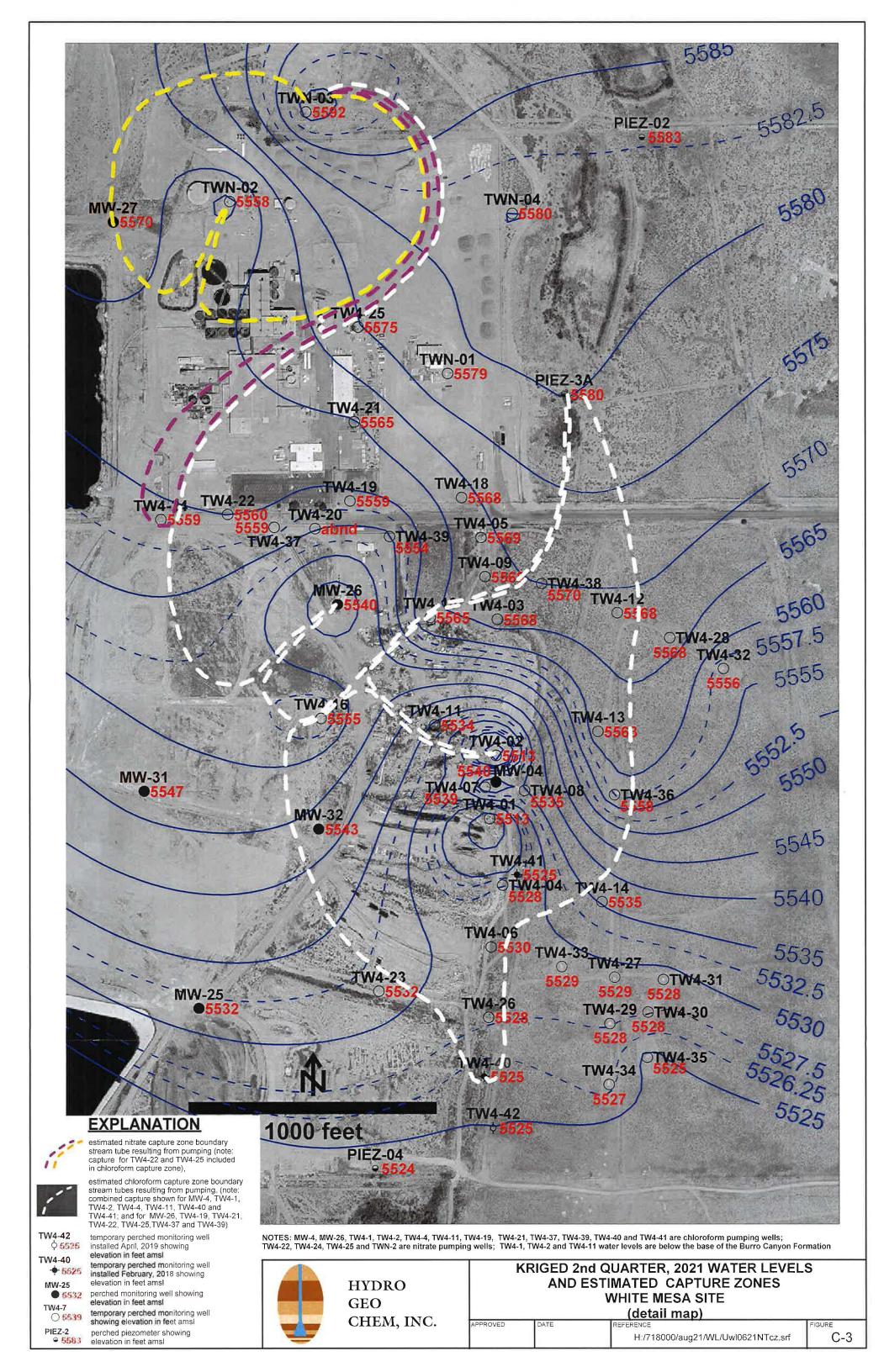
^{*} Depth is measured to the nearest 0.01 feet.

Weekly Inspection Form

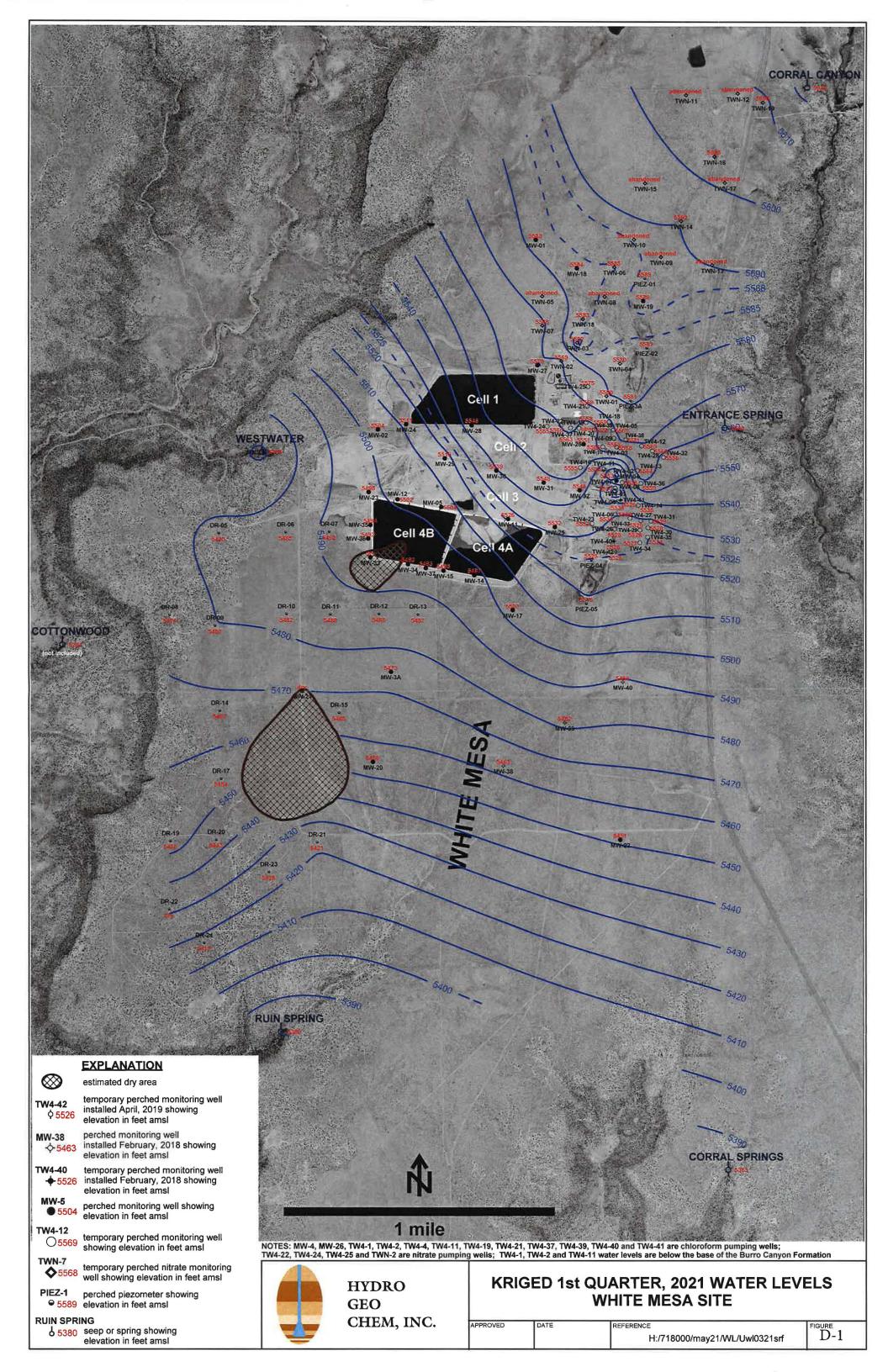
Date 6-28-21

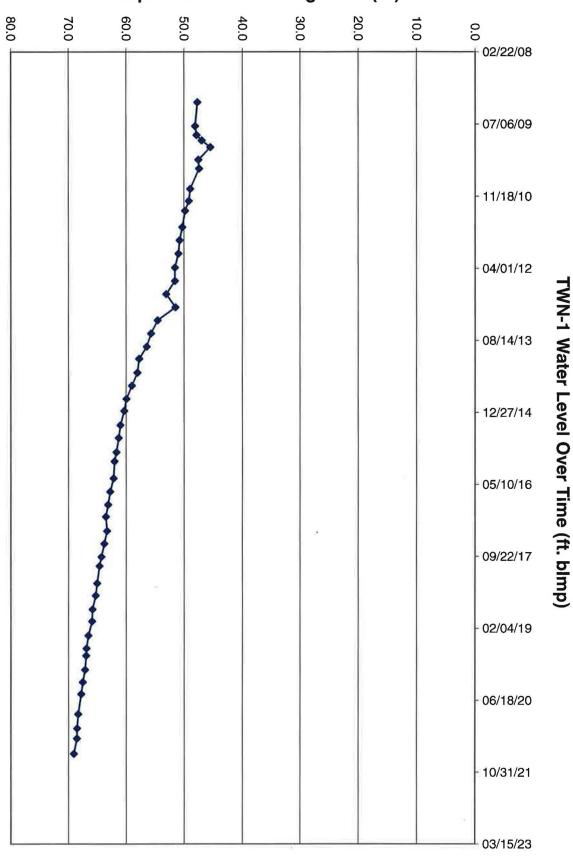

Name Deen Glyman, Tonner Holliday

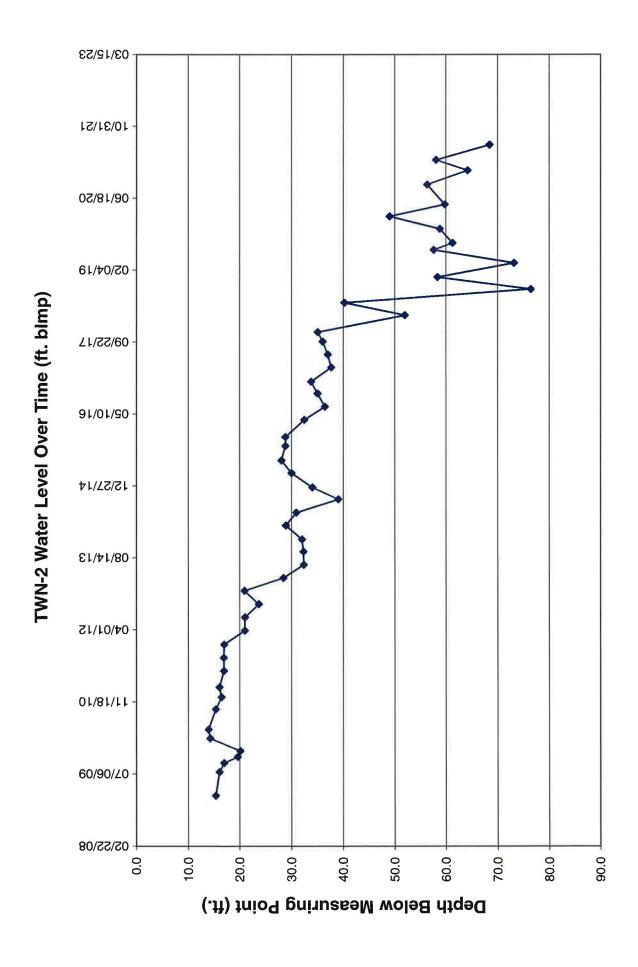

Tim	ne Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
095	T- 11 A A	81,61	Flow 4.0	Yes No
			Meter 2947871.77	YES NO
0931	MW-26	80,14	Flow 16.2	Xes No
			Meter 595015.7	No No
1430	TW4-19	75.33	Flow 16.0	¥æs No
			Meter 2809789.6	Yes No
NA	TW4-20	NA	Flow NA	Yes 🍇
	-		Meter NA	Yes Man
1008	T.W4-4	78.40	Flow 16,0 -	Yes No
	1		Meter 764578.2	Yes No
0859	TWN-2	59.20		¥e No
			Meter 75075.85	Yes No
0911	TW4-22	64.32	Flow 16.2	Yes No
			Meter 806555.8	-YSS No
2905	TW4-24	65.41	Flow 16.4	Yes No
			Meter 1665 729.27	No No
2852	TW4-25	69.05	Flow 10.4	¥ No
			Meter 954481.30	HES NO
1955	TW4-1		Flow 12.8	Yes No
			Meter 366986.0	¥ee No
942	TW4-2	102.01	Flow N/A	Yes &
			Meter 444940.5	Yes Mo-
936	TW4-11		Flow 14.8	Yes No
			Meter 3737.20	Y No
845	TW4-21	75.54	Flow 16,4	No No
			Meter 268/9 23,84	No No
116	TW4-37		Flow 17.8	Yes No
			Meter 20/0942.0	Yes No
22	ΓW4-39		Flow 18.0	¥es No
			Meter 818888.3	¥es No
20 7	W4-40		low 18	No No
	10/4 44		Meter 807056,72	Mo No
02 1	W4-41		Flow 6.0 Meter 3H 7767.26	No No
			Meter 347767.26	XES No


Operational Problems (Please list well number): Discovered we lost a pump on Tw4-20 1400. (Tw4-20 abandosed)

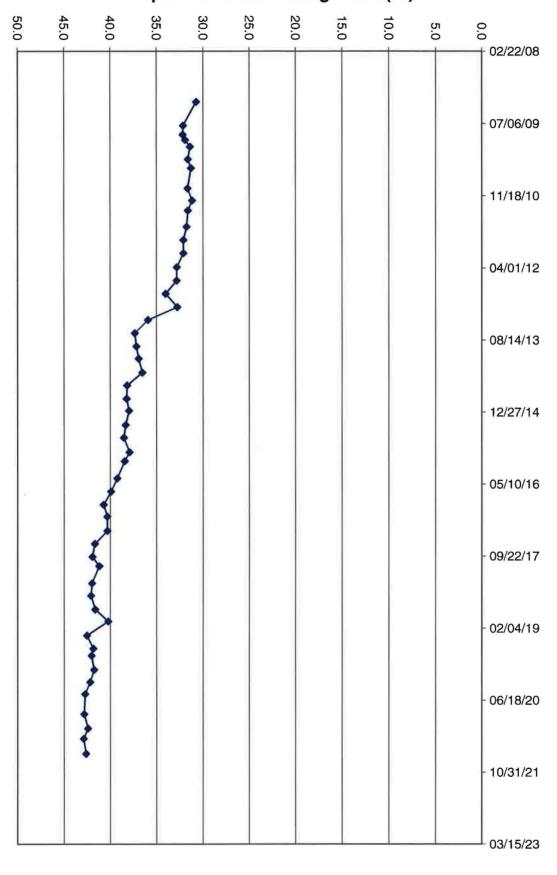
Corrective Action(s) Taken (Please list well number):


^{*} Depth is measured to the nearest 0.01 feet.

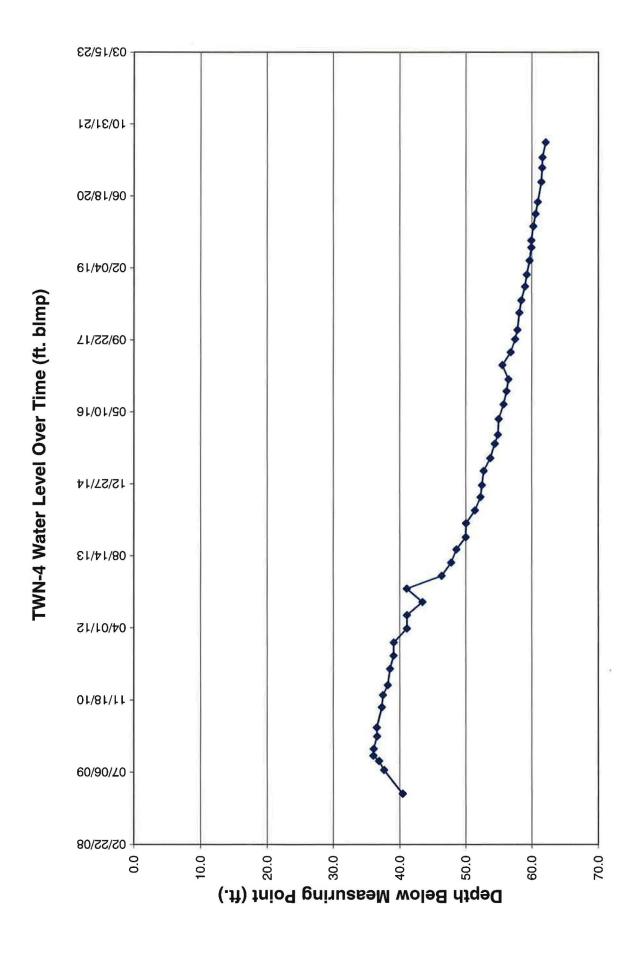

Tab D Kriged Previous Quarter Groundwater Contour Map

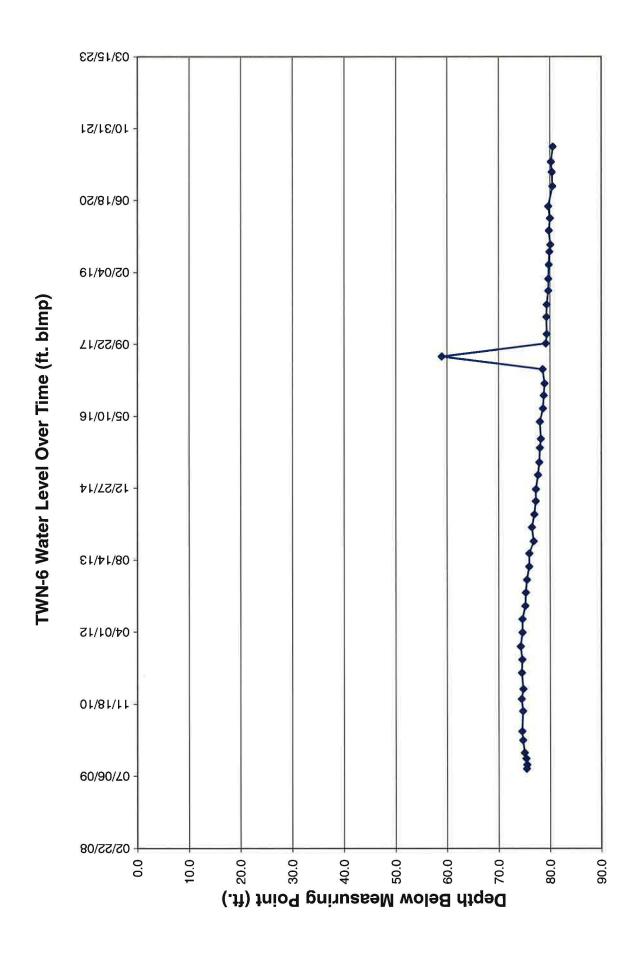


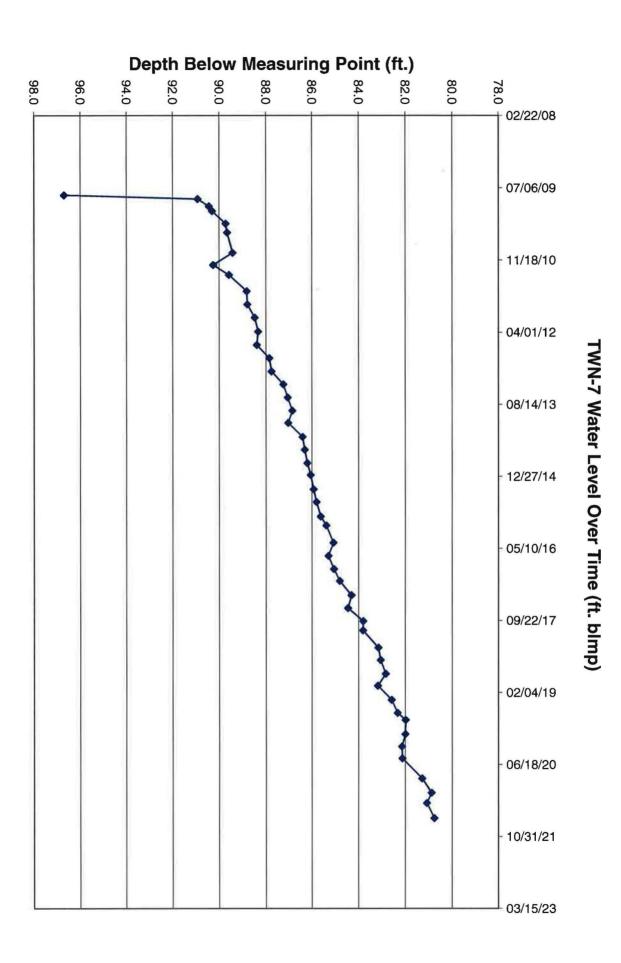
Tab E

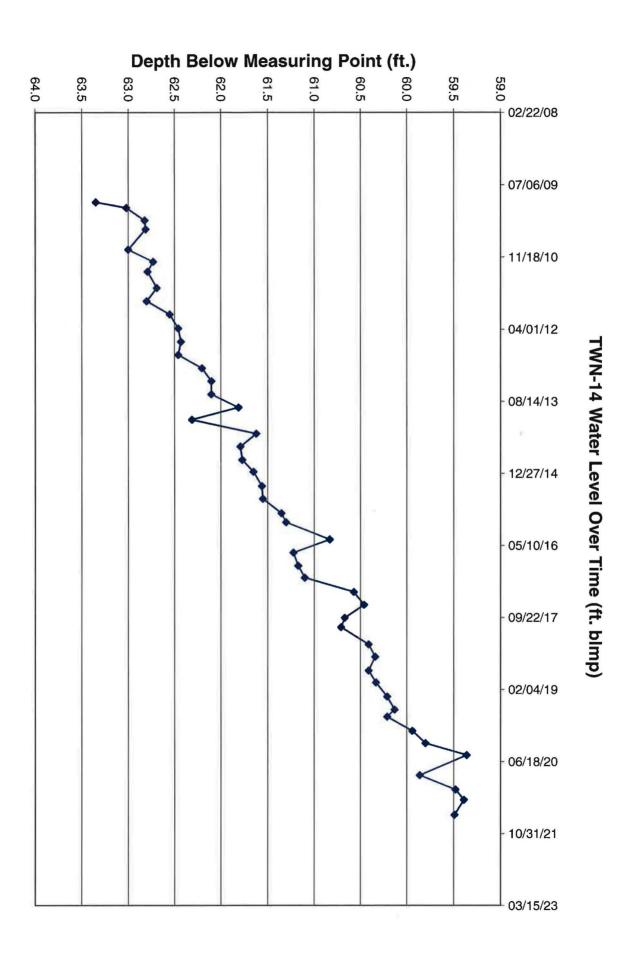

Hydrographs of Groundwater Elevations over Time for Nitrate Monitoring Wells

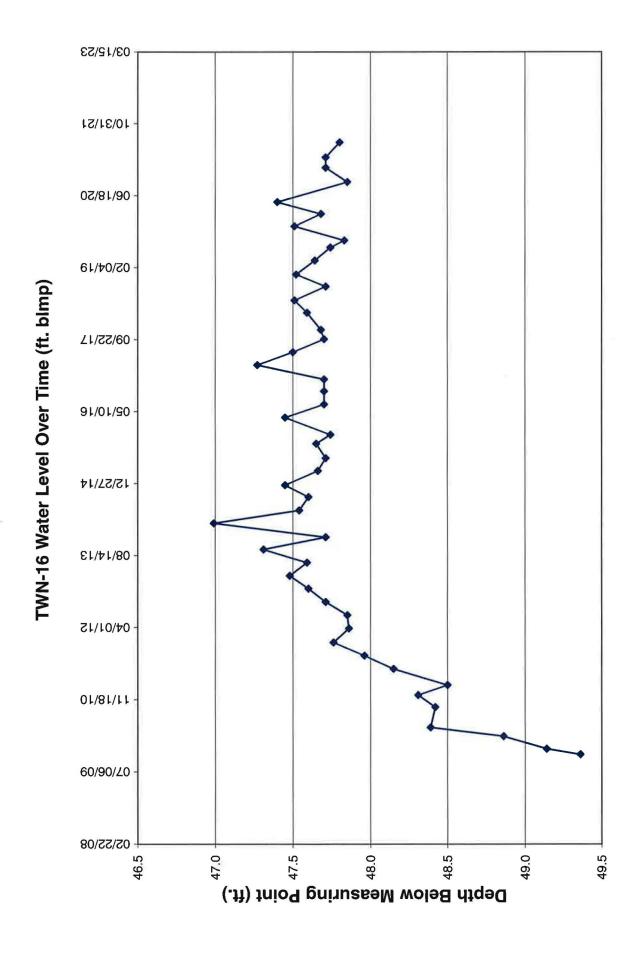
Depth Below Measuring Point (ft.)

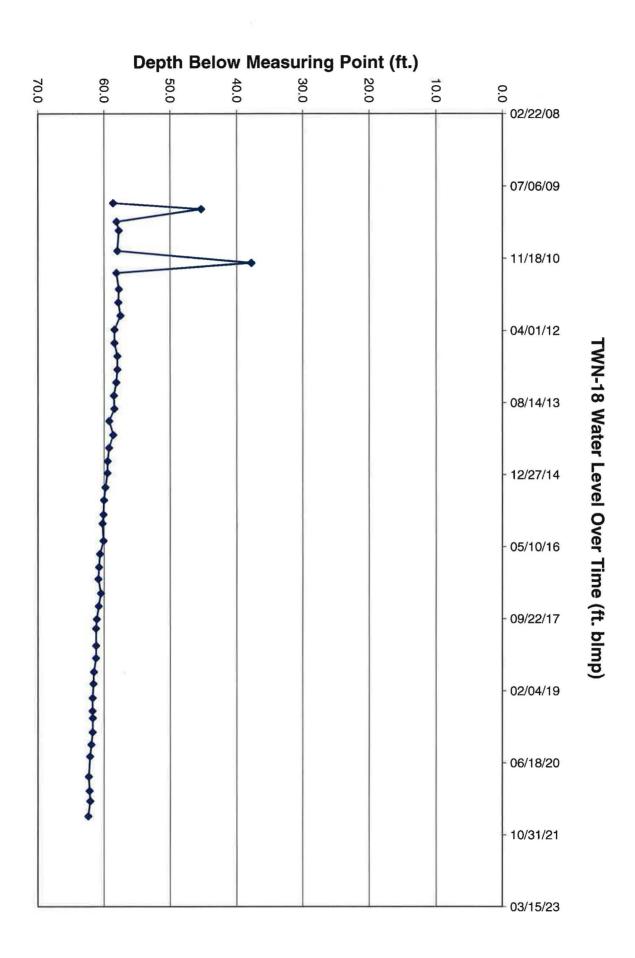


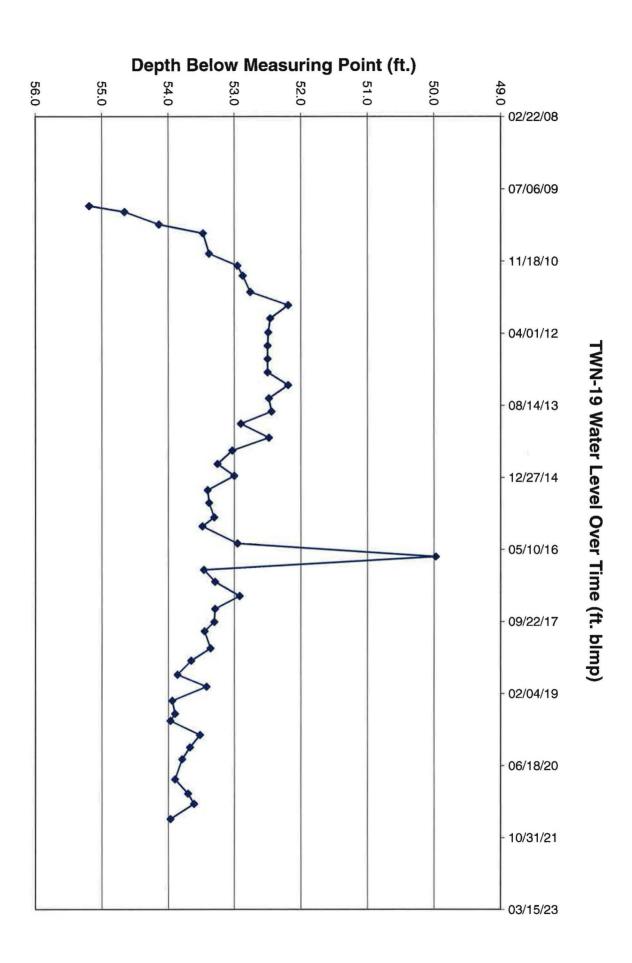


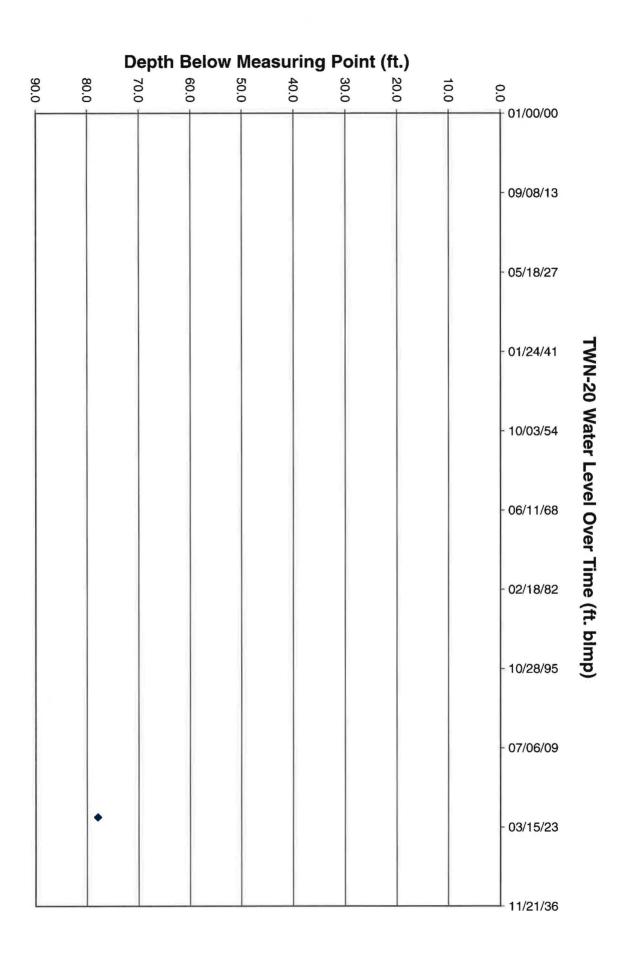

Depth Below Measuring Point (ft.)

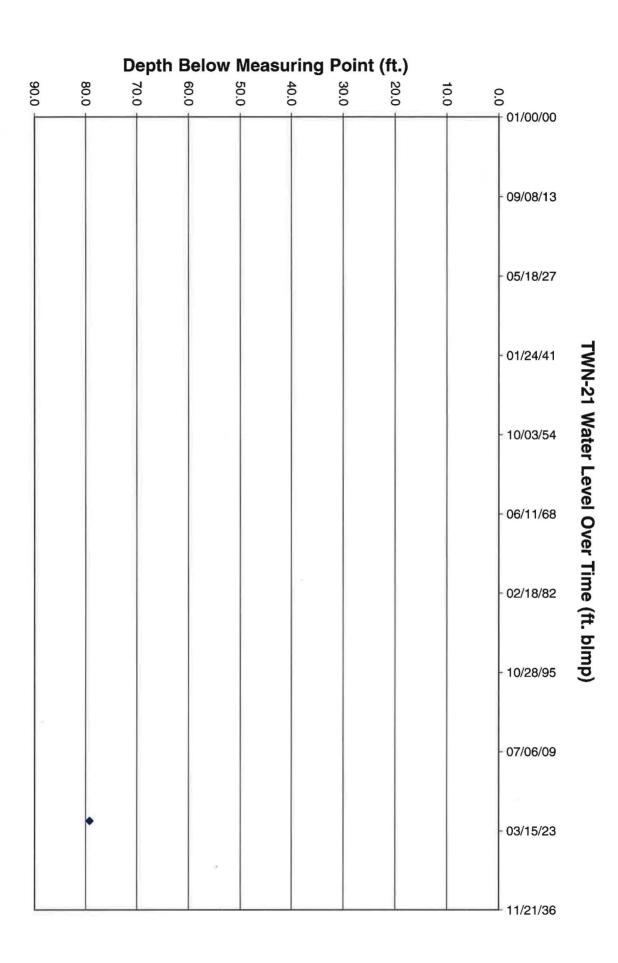


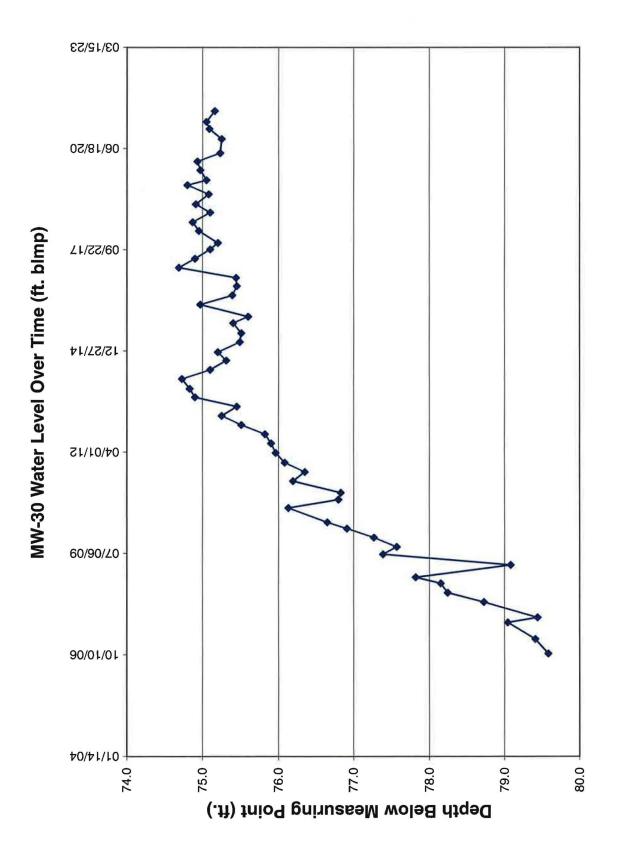

TWN-3 Water Level Over Time (ft. blmp)

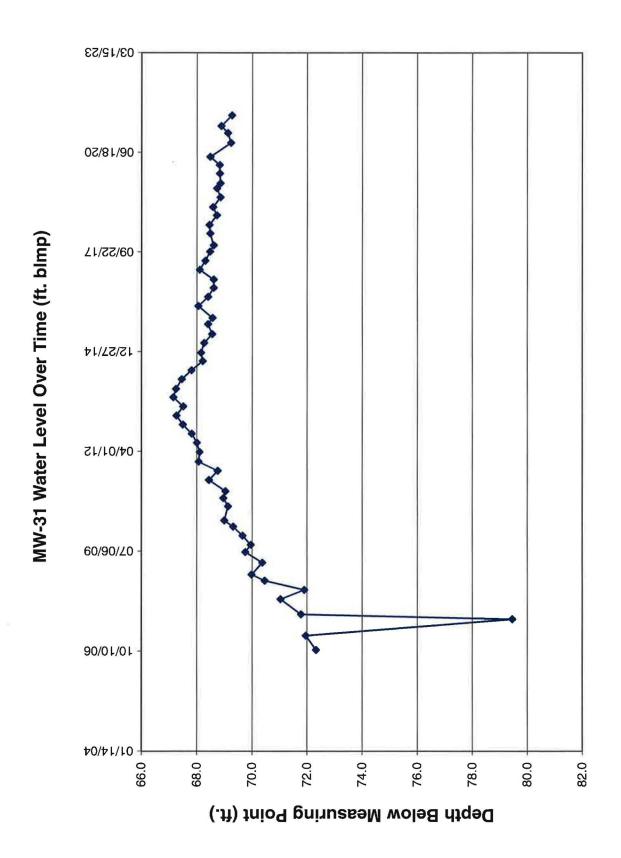












Tab F

Depths to Groundwater and Elevations over Time for Nitrate Monitoring Wells

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,646.96	5,648.09	1.13				106.13
5,600.38				02/06/09	47.71	46.58	
5,599.99				07/21/09	48.10	46.97	
5,600.26				09/21/09	47.83	46.70	
5,601.10				10/28/09	46.99	45.86	
5,602.59				12/14/09	45.50	44.37	
5,600.55				03/11/10	47.54	46.41	
5,600.66				05/11/10	47.43	46.30	
5,599.18				09/29/10	48.91	47.78	
5,598.92				12/21/10	49.17	48.04	
5,598.29				02/28/11	49.80	48.67	
5,597.80				06/21/11	50.29	49.16	
5,597.32				09/20/11	50.77	49.64	
5,597.15				12/21/11	50.94	49.81	
5,596.54				03/27/12	51.55	50.42	
5,596.52				06/28/12	51.57	50.44	
5,595.03				09/27/12	53.06	51.93	
5,596.62				12/28/12	51.47	50.34	
5,593.54				03/28/13	54.55	53.42	
5,592.38				06/27/13	55.71	54.58	
5,591.65				09/27/13	56.44	55.31	
5,590.34				12/20/13	57.75	56.62	
5,590.03				03/27/14	58.06	56.93	
5,589.09				06/25/14	59.00	57.87	
5,588.15				09/25/14	59.94	58.81	
5,587.74				12/17/14	60.35	59.22	
5,587.09				03/26/15	61.00	59.87	
5,586.79				06/22/15	61.30	60.17	
5,586.39				09/30/15	61.70	60.57	
5,586.05				12/02/15	62.04	60.91	
5,585.89				03/30/16	62.20	61.07	
5,585.30				06/30/16	62.79	61.66	
5,584.95				09/29/16	63.14	62.01	
5,584.55				12/21/16	63.54	62.41	
5,584.74				03/30/17	63.35	62.22	
5,584.29				06/27/17	63.80	62.67	
5,583.77				09/26/17	64.32	63.19	
5,583.44				11/29/17	64.65	63.52	
5,583.03				03/29/18	65.06	63.93	
5,582.79				06/22/18	65.30	64.17	
5,582.22				09/26/18	65.87	64.74	
5,582.14				12/17/18	65.95	64.82	
5,581.49				03/26/19	66.60	65.47	
5,581.18				06/24/19	66.91	65.78	
5,581.12				08/13/19	66.97	65.84	
5,580.93				11/19/19	67.16	66.03	
5,580.54				02/13/20	67.55	66.42	
5,580.24				05/05/20	67.85	66.72	
5,579.73				09/22/20	68.36	67.23	
				2000 0000 0 -0 050		NEW N. CONTRACTOR	

		Measuring			Total or Measured	Total	
Water Elevation	Land Surface	Point Elevation	Longth Of	Date Of	Depth to Water	Depth to Water	Total Depth Of
(WL)	(LSD)	(MP)	Length Of Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,646.96	5,648.09	1.13				106.13
5,579.54				12/30/20	68.55	67.42	
5,579.51				03/11/21	68.58	67.45	
5,578.97				06/24/21	69.12	67.99	

		M			Total or	Total	
***		Measuring			Measured	Total	T 4 1
Water	Land	Point	T	D . 00	Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,625.75	5,626.69	0.94	216100	15.00	14.00	95.9
5,611.37				2/6/09	15.32	14.38	
5,610.63				7/21/09	16.06	15.12	
5,609.73				9/21/09	16.96	16.02	
5,607.08				11/2/09	19.61	18.67	
5,606.57				12/14/09	20.12	19.18	
5,612.45				3/11/10	14.24	13.30	
5,612.78				5/11/10	13.91	12.97	
5,611.37				9/29/10	15.32	14.38	
5,610.24				12/21/10	16.45	15.51	
5,610.64				2/28/11	16.05	15.11	
5,609.78				6/21/11	16.91	15.97	
5609.79				9/20/11	16.90	15.96	
5609.72				12/21/11	16.97	16.03	
5,605.69				3/27/12	21.00	20.06	
5,605.67				6/28/12	21.02	20.08	
5,603.03				9/27/12	23.66	22.72	
5,605.76				12/28/12	20.93	19.99	
5,598.28				3/28/13	28.41	27.47	
5,594.32				6/27/13	32.37	31.43	
5,594.38				9/27/13	32.31	31.37	
5,594.68				12/20/13	32.01	31.07	
5,597.79				3/27/14	28.90	27.96	
5,595.80				6/25/14	30.89	29.95	
5,587.67				9/25/14	39.02	38.08	
5,592.66				12/17/14	34.03	33.09	
5,596.71				3/26/15	29.98	29.04	
5,598.64				6/22/15	28.05	27.11	
5,597.89				9/30/15	28.80	27.86	
5,597.89				12/2/15	28.80	27.86	
5,594.25				3/30/16	32.44	31.50	
5,590.26				6/30/16	36.43	35.49	
5,591.67				9/29/16	35.02	34.08	
5592.92				12/21/16	33.77	32.83	
5589.05				3/30/17	37.64	36.7	
5589.69				6/27/17	37.00	36.06	
5590.71				9/26/17	35.98	35.04	
5591.65				11/30/17	35.04	34.10	
5574.69				3/28/18	52.00	51.06	
5586.49				6/22/18	40.20	39.26	
5550.31				9/24/18	76.38	75.44	
5568.32				12/17/18	58.37	57.43	
5553.52				3/25/19	73.17	72.23	
5569.06				6/24/19	57.63	56.69	
5565.38				8/12/19	61.31	60.37	
5567.87				11/18/19	58.82	57.88	
5577.69				2/13/20	49.00	48.06	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,625.75	5,626.69	0.94				95.9
5566.89				5/5/20	59.80	58.86	
5570.34				9/21/20	56.35	55.41	
5562.46				12/28/20	64.23	63.29	
5568.57				3/11/21	58.12	57.18	
5558.22				6/24/21	68.47	67.53	

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,633.64	5,634.50	0.86				96
5,603.77				2/6/09	30.73	29.87	
5,602.37				7/21/09	32.13	31.27	
5,602.34				9/21/09	32.16	31.30	
5,602.60				10/28/09	31.90	31.04	
5,603.12				12/14/09	31.38	30.52	
5,602.90				3/11/10	31.60	30.74	
5,603.23				5/11/10	31.27	30.41	
5,602.86				9/29/10	31.64	30.78	
5,603.35				12/21/10	31.15	30.29	
5,602.89				2/28/11	31.61	30.75	
5,602.75				6/21/11	31.75	30.89	
5,602.40				9/20/11	32.10	31.24	
5,602.40				12/21/11	32.10	31.24	
5,601.70				3/27/12	32.80	31.94	
5,601.67				6/28/12	32.83	31.97	
5,600.50				9/27/12	34.00	33.14	
5,601.74				12/28/12	32.76	31.90	
5,598.60				3/28/13	35.90	35.04	
5,597.18				6/27/13	37.32	36.46	
5,597.36				9/27/13	37.14	36.28	
5,597.60				12/20/13	36.90	36.04	
5,598.00				3/27/14	36.50	35.64	
5,596.34				6/25/14	38.16	37.30	
5,596.30				9/25/14	38.20	37.34	
5,596.55				12/17/14	37.95	37.09	
5,596.20				3/26/15	38.30	37.44	
5,596.00				6/22/15	38.50	37.64	
5,596.61				9/30/15	37.89	37.03	
5,596.09				12/2/15	38.41	37.55	
5,595.29				3/30/16	39.21	38.35	
5,594.61				6/30/16	39.89	39.03	
5,593.79				9/29/16	40.71	39.85	
5,594.20				12/21/16	40.30	39.44	
5,594.20				3/30/17	40.30	39.44	
5,592.85				6/27/17	41.65	40.79	
5,592.60				9/26/17	41.90	41.04	
5,593.33				11/29/17	41.17	40.31	
5,592.55				3/29/18	41.95	41.09	
5,592.45				6/22/18	42.05	41.19	
5,592.90				9/26/18	41.60	40.74	
5,594.29				12/18/18	40.21	39.35	
5,591.99				3/26/19	42.51	41.65	
5,592.69				6/24/19	41.81	40.95	
5,592.50				8/13/19	42.00	41.14	
5,592.78				11/19/19	41.72	40.86	
5,592.33				2/13/20	42.17	41.31	
0,0000				13/2U	T4.1/	11.31	

Water Elevation	Land Surface	Measuring Point Elevation	Length Of	Date Of	Total or Measured Depth to Water	Total Depth to Water	Total Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,591.78		6		5/5/20	42.72	41.86	
5,591.67				9/22/20	42.83	41.97	
5,592.09				12/30/20	42.41	41.55	
5,591.62				3/11/21	42.88	42.02	
5,591.89				6/24/21	42.61	41.75	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
-	5,641.04	5,641.87	0.83				126.4
5,601.47				2/6/09	40.40	39.57	
5,604.26				7/21/09	37.61	36.78	
5,605.02				9/21/09	36.85	36.02	
5,605.87				10/28/09	36.00	35.17	
5,605.81				12/14/09	36.06	35.23	
5,605.31				3/11/10	36.56	35.73	
5,605.36				5/11/10	36.51	35.68	
5,604.59				9/29/10	37.28	36.45	
5,604.42				12/21/10	37.45	36.62	
5,603.69				2/28/11	38.18	37.35	
5,603.36				6/21/11	38.51	37.68	
5,602.82				9/20/11	39.05	38.22	
5,602.79				12/21/11	39.08	38.25	
5,600.82				3/27/12	41.05	40.22	
5,600.84				6/28/12	41.03	40.20	
5,598.47				9/27/12	43.40	42.57	
5,600.86				12/28/12	41.01	40.18	
5,595.57				3/28/13	46.30	45.47	
5,594.12				6/27/13	47.75	46.92	
5,593.33				9/27/13	48.54	47.71	
5,591.92				12/20/13	49.95	49.12	
5,591.85				3/27/14	50.02	49.19	
5,590.49				6/25/14	51.38	50.55	
5,589.64				9/25/14	52.23	51.40	
5,589.42				12/17/14	52.45	51.62	
5,589.17				3/26/15	52.70	51.87	
5,588.17				6/22/15	53.70	52.87	
5,587.48				9/30/15	54.39	53.56	
5,587.02				12/2/15	54.85	54.02	
5,586.90				3/20/16	54.97	54.14	
5,586.18				6/30/16	55.69	54.86	
5,585.72				9/29/16	56.15	55.32	
5585.42				12/21/16	56.45	55.62	
5586.35				3/30/17	55.52	54.69	
5585.09				6/27/17	56.78	55.95	
5584.41				9/26/17	57.46	56.63	
5584.07				11/29/17	57.80	56.97	
5583.76				3/29/18	58.11	57.28	
5583.47				6/22/18	58.40	57.57	
5582.92				9/26/18	58.95	58.12	
5582.66				12/18/18	59.21	58.38	
5582.23				3/26/19	59.64	58.81	
5581.97				6/24/19	59.90	59.07	
5581.96				8/13/19	59.91	59.08	
5581.68				11/19/19	60.19	59.36	
5581.34				2/13/20	60.53	59.70	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,641.04	5,641.87	0.83				126.4
5580.99				5/5/20	60.88	60.05	
5580.45				9/22/20	61.42	60.59	
5580.34				12/30/20	61.53	60.70	
5580.29				3/11/21	61.58	60.75	
5579.8				6/24/21	62.07	61.24	

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(WE)	5,663.03	5,664.94	1.91	Montoring	(DIW-IVII)	(DIWILDD)	131.91
5,589.52	2,002102	0,001171	1.71	8/25/09	75.42	73.51	101171
5,589.46				9/22/09	75.48	73.57	
5,589.61				11/3/09	75.33	73.42	
5,589.92				12/14/09	75.02	73.11	
5,590.24				3/11/10	74.70	72.79	
5,590.40				5/11/10	74.54	72.63	
5,590.24				9/29/10	74.70	72.79	
5,590.49				12/21/10	74.45	72.54	
5,590.16				2/28/11	74.78	72.87	
5,590.44				6/21/11	74.50	72.59	
5,590.35				9/20/11	74.59	72.68	
5,590.67				12/21/11	74.27	72.36	
5,590.34				3/27/12	74.60	72.69	
5,590.32				6/28/12	74.62	72.71	
5,589.77				9/27/12	75.17	73.26	
5,589.67				12/28/12	75.27	73.36	
5,589.45				3/28/13	75.49	73.58	
5,589.01				6/27/13	75.93	74.02	
5,588.99				9/27/13	75.95	74.04	
5,588.15				12/20/13	76.79	74.88	
5,588.50				3/27/14	76.44	74.53	
5,588.03				6/25/14	76.91	75.00	
5,587.74				9/25/14	77.20	75.29	
5,587.69				12/17/14	77.25	75.34	
5,587.29				3/26/15	77.65	75.74	
5,587.04				6/22/15	77.90	75.99	
5,586.93				9/30/15	78.01	76.10	
5,586.72				12/2/15	78.22	76.31	
5,586.92				3/30/16	78.02	76.11	
5,586.32				6/30/16	78.62	76.71	
5,586.16				9/29/16	78.78	76.87	
5,586.03				12/21/16	78.91	77.00	
5,586.40				3/30/17	78.54	76.63	
5,605.99				6/27/17	58.95	57.04	
5585.76				9/26/17	79.18	77.27	
5585.59				11/29/17	79.35	77.44	
5585.63				3/29/18	79.31	77.4	
5585.59				6/22/18	79.35	77.44	
5585.26				9/26/18	79.68	77.77	
5585.27				12/18/18	79.67	77.76	
5585.16				3/26/19	79.78	77.87	
5585.05				6/24/19	79.89	77.98	
5584.86				8/13/19	80.08	78.17	
5585.14				11/19/19	79.80	77.89	
5584.92				2/13/20	80.02	78.11	
5585.27				5/5/20	79.67	77.76	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,663.03	5,664.94	1.91				131.91
5584.46				9/22/20	80.48	78.57	
5584.58				12/30/20	80.36	78.45	
5584.73				3/11/21	80.21	78.30	
5584.38				6/24/21	80.56	78.65	

Point Carbon Point Carbon Point Carbon Point Carbon Point Point			Measuring			Total or Measured	Total	
WE Company Company	Water	Land	Point			Depth to	Depth to	Total
5,552,58 08/25/09 96,70 94,83 5,558,82 11/10/09 90,92 89,05 5,558,82 11/10/09 90,44 88,57 5,558,86 12/14/09 90,30 88,43 5,559,59 03/11/10 89,66 87,79 5,559,83 09/29/10 89,43 87,56 5,559,68 02/28/11 89,58 87,71 5,559,68 02/28/11 89,58 87,71 5,559,68 02/28/11 89,58 87,71 5,559,68 02/28/11 88,80 86,93 5,560,43 06/21/11 88,80 86,93 5,560,78 12/21/11 88,80 86,93 5,560,87 06/28/12 88,34 86,47 5,561,50 12/28/12 87,76 85,89 5,562,21 03/28/13 87,25 85,38 5,562,21 06/27/12 87,86 85,99 5,562,23 12/20/13 86,85 84,98 5,562,25 06/27/14	Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
5,552,56 08/25/09 96,70 94.83 5,558,34 09/21/09 90.92 89.05 5,558,86 11/10/09 90.44 88.57 5,559,54 03/11/10 89.72 87.85 5,559,60 05/11/10 89.66 87.79 5,559,83 09/29/10 89.43 87.56 5,559,00 12/21/11 90.26 88.39 5,559,68 02/28/11 89.58 87.71 5,550,64 09/20/11 88.80 86.93 5,560,43 06/21/11 88.83 86.96 5,560,78 12/21/11 88.84 86.61 5,560,78 12/21/11 88.48 86.61 5,560,87 06/28/12 88.39 86.52 5,561,40 09/27/12 88.39 86.52 5,561,40 09/27/12 88.39 86.52 5,562,01 03/28/13 87.25 85.38 5,562,21 06/27/13 87.05 85.18 5,562,23 12/20/13	(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
5,558.34 09/21/09 90.92 89.05 5,558.82 11/10/09 90.44 88.57 5,558.96 12/14/09 90.30 88.43 5,559.54 03/11/10 89.72 87.85 5,559.60 05/11/10 89.66 87.79 5,559.83 09/29/10 89.43 87.56 5,559.00 12/21/10 90.26 88.39 5,559.68 02/28/11 88.83 86.96 5,560.43 06/21/11 88.83 86.96 5,560.78 12/21/11 88.84 86.61 5,560.78 12/21/11 88.48 86.61 5,560.87 06/28/12 88.39 86.52 5,561.40 09/27/12 87.86 85.99 5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 86.85 84.98 5,562.23 12/20/13 87.05 85.18 5,562.25 06/27/13 86.41 84.54 5,563.46 09/25/14		5,647.39	5,649.26	1.87				107.2
5,558.82 11/10/09 90.44 88.57 5,558.96 12/14/09 90.30 88.43 5,559.54 03/11/10 89.66 87.79 5,559.83 09/29/10 89.43 87.56 5,559.80 12/21/10 90.26 88.39 5,559.68 02/28/11 89.58 87.71 5,560.43 06/21/11 88.83 86.96 5,560.78 12/21/11 88.48 86.93 5,560.92 03/27/12 88.34 86.47 5,560.87 06/28/12 88.39 86.52 5,561.40 09/27/12 87.86 85.99 5,561.50 12/28/12 87.76 85.89 5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 86.85 84.98 5,562.23 12/20/13 86.85 84.98 5,562.24 09/27/13 86.85 84.98 5,562.25 06/27/14 86.31 84.44 5,562.85 03/27/14 86.41 84.54 5,563.33 03/26/15 85.93	5,552.56				08/25/09	96.70	94.83	
5,558,96 12/14/09 90.30 88.43 5,559,560 03/11/10 89.72 87.85 5,559,60 05/11/10 89.66 87.79 5,559,83 09/29/10 89.43 87.56 5,559,00 12/21/10 90.26 88.39 5,550,68 02/28/11 89.58 87.71 5,560,43 06/21/11 88.83 86.96 5,560,46 09/20/11 88.80 86.93 5,560,78 12/21/11 88.48 86.61 5,560,87 06/28/12 88.39 86.52 5,561,40 09/27/12 87.86 85.99 5,562,1 09/27/13 87.05 85.18 5,562,1 09/27/13 87.05 85.18 5,562,21 06/27/13 87.05 85.18 5,562,23 12/20/13 87.03 85.16 5,562,25 03/27/14 86.41 84.54 5,562,25 03/27/14 86.41 84.54 5,562,26 03/27/14 86.41 84.54 5,563,33 03/26/15 85.93<	5,558.34				09/21/09	90.92	89.05	
5,559.54 03/11/10 89.72 87.85 5,559.60 05/11/10 89.66 87.79 5,559.83 09/29/10 89.43 87.56 5,559.60 12/21/10 90.26 88.39 5,559.68 02/28/11 89.58 87.71 5,560.43 06/21/11 88.83 86.96 5,560.46 09/20/11 88.80 86.93 5,560.78 12/21/11 88.48 86.61 5,560.92 03/27/12 88.34 86.47 5,560.87 06/28/12 88.39 86.52 5,561.40 09/27/12 87.86 85.99 5,561.50 12/28/12 87.76 85.89 5,562.21 06/27/13 87.05 85.18 5,562.21 06/27/13 87.05 85.18 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.33 03/26/15	5,558.82				11/10/09	90.44	88.57	
5,559,60 05/11/10 89.66 87.79 5,559,83 09/29/10 89.43 87.56 5,559,00 12/21/10 90.26 88.39 5,559,68 02/28/11 89.58 87.71 5,560,43 06/21/11 88.83 86.96 5,560,78 12/21/11 88.48 86.61 5,560,92 03/27/12 88.34 86.47 5,560,87 06/28/12 88.39 86.52 5,561,40 09/27/12 87.86 85.99 5,562,01 03/28/13 87.25 85.89 5,562,01 03/28/13 87.25 85.38 5,562,21 06/27/13 87.05 85.18 5,562,23 12/20/13 87.03 85.16 5,562,23 12/20/13 87.03 85.16 5,562,25 03/27/14 86.41 84.54 5,562,25 03/27/14 86.41 84.54 5,562,23 12/20/13 87.03 85.16 5,562,24 03/20/13	5,558.96				12/14/09	90.30	88.43	
5,559.83 09/29/10 89.43 87.56 5,559.06 12/21/10 90.26 88.39 5,559.68 02/28/11 89.58 87.71 5,560.43 06/21/11 88.83 86.96 5,560.46 09/20/11 88.80 86.93 5,560.78 12/21/11 88.48 86.61 5,560.87 06/28/12 88.39 86.52 5,561.40 09/27/12 87.86 85.99 5,561.50 12/28/12 87.76 85.89 5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 87.05 85.18 5,562.23 12/20/13 87.05 85.18 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.33 03/26/15 85.93 84.06 5,563.46 09/25/14 86.05 84.18 5,563.88 12/20/15	5,559.54				03/11/10	89.72	87.85	
5,559.00 12/21/10 90.26 88.39 5,559.68 02/28/11 89.58 87.71 5,560.43 06/21/11 88.83 86.96 5,560.46 09/20/11 88.80 86.93 5,560.78 12/21/11 88.48 86.61 5,560.92 03/27/12 88.34 86.47 5,561.40 09/27/12 87.86 85.99 5,561.50 12/28/12 87.76 85.89 5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 87.05 85.18 5,562.21 09/27/13 86.85 84.98 5,562.23 12/20/13 87.03 85.16 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.85 06/25/14 86.31 84.44 5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 09/25/14	5,559.60				05/11/10		87.79	
5,559.68 02/28/11 89.58 87.71 5,560.43 06/21/11 88.83 86.96 5,560.46 09/20/11 88.80 86.93 5,560.78 12/21/11 88.48 86.61 5,560.92 03/27/12 88.34 86.47 5,560.87 06/28/12 88.39 86.52 5,561.40 09/27/12 87.76 85.89 5,562.01 03/28/13 87.25 85.89 5,562.21 06/27/13 87.05 85.18 5,562.21 09/27/13 86.85 84.98 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.36 09/25/14 86.20 84.33 5,563.31 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 09/21/15 85.38 83.93 5,564.19 03/30/16	5,559.83				09/29/10	89.43	87.56	
5,560.43 06/21/11 88.83 86.96 5,560.78 12/21/11 88.80 86.93 5,560.78 12/21/11 88.48 86.61 5,560.92 03/27/12 88.34 86.47 5,560.87 06/28/12 88.39 86.52 5,561.40 09/27/12 87.86 85.99 5,561.50 12/28/12 87.76 85.89 5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 87.05 85.18 5,562.23 12/20/13 87.03 85.16 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.21 12/17/14 86.02 84.33 5,563.31 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 09/25/15 85.38 83.51 5,564.19 03/30/15	5,559.00				12/21/10	90.26	88.39	
5,560.46 09/20/11 88.80 86.93 5,560.78 12/21/11 88.48 86.61 5,560.92 03/27/12 88.34 86.47 5,560.87 06/28/12 88.39 86.52 5,561.40 09/27/12 87.86 85.99 5,561.50 12/28/12 87.76 85.89 5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 87.05 85.18 5,562.24 09/27/13 86.85 84.98 5,562.23 12/20/13 87.03 85.16 5,562.25 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.06 09/25/14 86.01 84.44 5,563.31 03/26/15 85.93 84.06 5,563.46 09/30/15 85.02 83.75 5,563.88 12/20/15 85.38 83.51 5,564.19 03/30/16 85.02 83.42 5,564.21 09/29/16	5,559.68				02/28/11	89.58	87.71	
5,560.78 12/21/11 88.48 86.61 5,560.92 03/27/12 88.34 86.47 5,560.87 06/28/12 88.39 86.52 5,561.40 09/27/12 87.86 85.99 5,561.50 12/28/12 87.76 85.89 5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 87.05 85.18 5,562.23 12/20/13 87.05 85.18 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,564.21 09/29/16	5,560.43				06/21/11	88.83	86.96	
5,560.92 03/27/12 88.34 86.47 5,560.87 06/28/12 88.39 86.52 5,561.40 09/27/12 87.86 85.99 5,561.50 12/28/12 87.76 85.89 5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 86.85 84.98 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.31 84.44 5,562.95 06/25/14 86.31 84.44 5,563.06 09/25/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,564.21 09/29/16 85.05 83.18 5,564.81 09/29/16 85.05 83.18 5,564.81 09/29/16 85.05 83.18 5,566.46 09/26/17 83.80 81.93 5,566.47 09/26/18 83.05 81.18 5,566.61 09/26/18 83.05 81.18	5,560.46				09/20/11	88.80	86.93	
5,560.87 06/28/12 88.39 86.52 5,561.40 09/27/12 87.86 85.99 5,561.50 12/28/12 87.76 85.89 5,562.01 03/28/13 87.25 85.88 5,562.21 06/27/13 86.85 84.98 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.06 09/25/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.88 12/02/15 85.80 83.75 5,563.97 06/30/16 85.07 83.20 5,564.19 03/30/16 85.05 83.18 5,564.96 03/30/17 84.80 82.93 5,564.96 03/30/17 84.80 82.93 5,564.91 09/29/16 85.05 83.18 5,566.93 06/27/17	5,560.78				12/21/11	88.48	86.61	
5,561.40 09/27/12 87.86 85.99 5,561.50 12/28/12 87.76 85.89 5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 87.05 85.18 5,562.41 09/27/13 86.85 84.98 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,564.21 09/29/16 85.02 83.18 5,564.81 09/29/16 84.80 82.93 5,564.81 06/27/17 84.45 82.58 5,565.45 11/29/17 83.81 81.94 5,566.21 06/22/18 83.05	5,560.92				03/27/12	88.34	86.47	
5,561.50 12/28/12 87.76 85.89 5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 86.85 84.98 5,562.41 09/27/13 86.85 84.98 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.06 09/25/14 86.02 84.33 5,563.31 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,564.21 09/29/16 85.05 83.18 5,564.21 09/29/16 85.05 83.18 5,564.81 06/27/17 84.45 82.58 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81	5,560.87				06/28/12	88.39	86.52	
5,562.01 03/28/13 87.25 85.38 5,562.21 06/27/13 87.05 85.18 5,562.41 09/27/13 86.85 84.98 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.06 09/25/14 86.20 84.33 5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,564.21 09/29/16 85.05 83.18 5,564.21 09/29/16 85.05 83.18 5,564.81 06/27/17 84.48 82.93 5,565.46 09/26/17 83.80 81.93 5,565.46 09/26/17 83.80 81.93 5,566.41 09/26/17 83.81	5,561.40				09/27/12	87.86	85.99	
5,562.21 06/27/13 87.05 85.18 5,562.41 09/27/13 86.85 84.98 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.06 09/25/14 86.20 84.33 5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.86 12/02/15 85.38 83.51 5,563.87 09/30/16 85.07 83.20 5,564.19 03/30/16 85.07 83.20 5,564.21 09/29/16 85.05 83.18 5,564.21 09/29/16 85.05 83.18 5,564.86 12/21/16 84.80 82.93 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.42 09/26/18 82.84 80.97 5,566.93 06/22/18 83.05	5,561.50				12/28/12	87.76	85.89	
5,562.41 09/27/13 86.85 84.98 5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.06 09/25/14 86.20 84.33 5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,563.97 06/30/16 85.07 83.20 5,564.21 09/29/16 85.05 83.18 5,564.96 03/30/17 84.30 82.43 5,564.96 03/30/17 84.30 82.43 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.21 06/22/18 83.05 81.18 5,566.60 09/26/18 82.84 80.97 5,566.69 12/18/18 83.17	5,562.01				03/28/13	87.25	85.38	
5,562.23 12/20/13 87.03 85.16 5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.06 09/25/14 86.20 84.33 5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.88 12/02/15 85.38 83.51 5,563.97 06/30/16 85.07 83.20 5,564.19 03/30/16 85.05 83.18 5,564.21 09/29/16 85.05 83.18 5,564.81 06/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.21 06/22/18 83.05 81.18 5,566.21 06/22/18 83.05 81.18 5,566.93 06/24/19 82.59 80.72 5,566.93 06/24/19 82.33	5,562.21				06/27/13	87.05	85.18	
5,562.85 03/27/14 86.41 84.54 5,562.95 06/25/14 86.31 84.44 5,563.06 09/25/14 86.20 84.33 5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.88 12/02/15 85.38 83.51 5,563.97 06/30/16 85.07 83.20 5,564.21 09/29/16 85.05 83.18 5,564.96 03/30/17 84.30 82.43 5,564.81 06/27/17 84.45 82.58 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.93 06/24/19 82.59 80.72 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00	5,562.41				09/27/13	86.85	84.98	
5,562.95 06/25/14 86.31 84.44 5,563.06 09/25/14 86.20 84.33 5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.84 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,563.97 06/30/16 85.29 83.42 5,564.21 09/29/16 85.05 83.18 5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,565.45 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.21 06/22/18 83.05 81.18 5,566.21 06/22/18 83.05 81.18 5,566.22 09/26/18 82.84 80.97 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98	5,562.23				12/20/13	87.03	85.16	
5,563.06 09/25/14 86.20 84.33 5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,563.97 06/30/16 85.29 83.42 5,564.21 09/29/16 85.05 83.18 5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,565.45 09/26/17 84.45 82.58 5,565.45 11/29/17 83.81 81.94 5,566.21 06/22/18 83.05 81.18 5,566.21 06/22/18 83.05 81.18 5,566.22 09/26/18 82.84 80.97 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00	5,562.85				03/27/14	86.41	84.54	
5,563.21 12/17/14 86.05 84.18 5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,563.97 06/30/16 85.29 83.42 5,564.21 09/29/16 85.05 83.18 5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.21 06/22/18 83.05 81.18 5,566.21 06/22/18 83.05 81.18 5,566.69 12/18/18 83.17 81.30 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,562.95				06/25/14	86.31	84.44	
5,563.33 03/26/15 85.93 84.06 5,563.46 06/22/15 85.80 83.93 5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,563.97 06/30/16 85.29 83.42 5,564.21 09/29/16 85.05 83.18 5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.21 03/29/18 83.15 81.28 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,563.06				09/25/14	86.20	84.33	
5,563.46 06/22/15 85.80 83.93 5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,563.97 06/30/16 85.29 83.42 5,564.21 09/29/16 85.05 83.18 5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,565.481 06/27/17 84.45 82.58 5,565.45 09/26/17 83.80 81.93 5,566.41 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,563.21				12/17/14	86.05	84.18	
5,563.64 09/30/15 85.62 83.75 5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,563.97 06/30/16 85.29 83.42 5,564.21 09/29/16 85.05 83.18 5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,564.81 06/27/17 84.45 82.58 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.21 03/29/18 83.15 81.28 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,563.33				03/26/15	85.93	84.06	
5,563.88 12/02/15 85.38 83.51 5,564.19 03/30/16 85.07 83.20 5,563.97 06/30/16 85.29 83.42 5,564.21 09/29/16 85.05 83.18 5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.11 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.93 06/24/19 82.59 80.72 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,563.46				06/22/15	85.80	83.93	
5,564.19 03/30/16 85.07 83.20 5,563.97 06/30/16 85.29 83.42 5,564.21 09/29/16 85.05 83.18 5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,564.81 06/27/17 84.45 82.58 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.11 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,563.64				09/30/15	85.62	83.75	
5,563.97 06/30/16 85.29 83.42 5,564.21 09/29/16 85.05 83.18 5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,564.81 06/27/17 84.45 82.58 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.11 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.93 06/24/19 82.59 80.72 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,563.88				12/02/15	85.38	83.51	
5,564.21 09/29/16 85.05 83.18 5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,564.81 06/27/17 84.45 82.58 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.11 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,564.19				03/30/16	85.07	83.20	
5,564.46 12/21/16 84.80 82.93 5,564.96 03/30/17 84.30 82.43 5,564.81 06/27/17 84.45 82.58 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.11 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,563.97				06/30/16	85.29	83.42	
5,564.96 03/30/17 84.30 82.43 5,564.81 06/27/17 84.45 82.58 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.11 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,564.21				09/29/16	85.05	83.18	
5,564.81 06/27/17 84.45 82.58 5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.11 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,564.46				12/21/16	84.80	82.93	
5,565.46 09/26/17 83.80 81.93 5,565.45 11/29/17 83.81 81.94 5,566.11 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,564.96				03/30/17	84.30	82.43	
5,565.45 11/29/17 83.81 81.94 5,566.11 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,564.81				06/27/17	84.45	82.58	
5,566.11 03/29/18 83.15 81.28 5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,565.46				09/26/17	83.80	81.93	
5,566.21 06/22/18 83.05 81.18 5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,565.45				11/29/17	83.81	81.94	
5,566.42 09/26/18 82.84 80.97 5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,566.11				03/29/18	83.15	81.28	
5,566.09 12/18/18 83.17 81.30 5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,566.21				06/22/18	83.05	81.18	
5,566.67 03/26/19 82.59 80.72 5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,566.42				09/26/18	82.84	80.97	
5,566.93 06/24/19 82.33 80.46 5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,566.09				12/18/18	83.17	81.30	
5,567.28 08/13/19 81.98 80.11 5,567.26 11/19/19 82.00 80.13	5,566.67				03/26/19	82.59	80.72	
5,567.26 11/19/19 82.00 80.13	5,566.93				06/24/19	82.33	80.46	
	5,567.28				08/13/19	81.98	80.11	
					11/19/19	82.00	80.13	
	5,567.12				02/13/20	82.14	80.27	
5,567.14 05/05/20 82.12 80.25	5,567.14				05/05/20	82.12	80.25	

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,647.39	5,649.26	1.87				107.2
5,567.98				09/22/20	81.28	79.41	
5,568.38				12/30/20	80.88	79.01	
5,568.18				03/11/21	81.08	79.21	
5,568.50				06/24/21	80.76	78.89	

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,647.80	5,649.53	1.73		(y	Ç	124.73
5,586.18				11/4/09	63.35	61.62	
5,586.51				12/14/09	63.02	61.29	
5,586.71				3/11/10	62.82	61.09	
5,586.72				5/11/10	62.81	61.08	
5,586.53				9/29/10	63.00	61.27	
5,586.80				12/21/10	62.73	61.00	
5,586.74				2/28/11	62.79	61.06	
5,586.84				6/21/11	62.69	60.96	
5,586.73				9/20/11	62.80	61.07	
5,586.98				12/21/11	62.55	60.82	
5,587.07				3/27/12	62.46	60.73	
5,587.10				6/28/12	62.43	60.70	
5,587.07				9/27/12	62.46	60.73	
5,587.33				12/28/12	62.20	60.47	
5,587.43				3/28/13	62.10	60.37	
5,587.43				6/27/13	62.10	60.37	
5,587.72				9/27/13	61.81	60.08	
5,587.22				12/20/13	62.31	60.58	
5,587.91				3/27/14	61.62	59.89	
5,587.74				6/25/14	61.79	60.06	
5,587.76				9/25/14	61.77	60.04	
5,587.88				12/17/14	61.65	59.92	
5,587.97				3/26/15	61.56	59.83	
5,587.98				6/22/15	61.55	59.82	
5,588.18				9/30/15	61.35	59.62	
5,588.23				12/2/15	61.30	59.57	
5,588.70				3/30/16	60.83	59.10	
5,588.31		40		6/30/16	61.22	59.49	
5,588.36				9/29/16	61.17	59.44	
5,588.43				12/21/16	61.10	59.37	
5,588.96				3/30/17	60.57	58.84	
5,589.07				6/27/17	60.46	58.73	
5588.86				9/26/17	60.67	58.94	
5588.82				11/29/17	60.71	58.98	
5589.12				3/29/18	60.41	58.68	
5589.19				6/22/18	60.34	58.61	
5589.12				9/26/18	60.41	58.68	
5589.20				12/18/18	60.33	58.60	
5589.32				3/26/19	60.21	58.48	
5589.40				6/25/19	60.13	58.40	
5589.32				8/13/19	60.21	58.48	
5589.59				11/19/19	59.94	58.21	
5589.73				2/13/20	59.80	58.07	
5590.17				5/5/20	59.36	57.63	
5589.67				9/22/20	59.86	58.13	
5590.05				12/30/20	59.48	57.75	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,647.80	5,649.53	1.73				124.73
5590.14				3/11/21	59.39	57.66	
5590.04				6/24/21	59.49	57.76	

Water Levels and Data over Time White Mesa Mill - Well TWN-16 Total or

***		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,651.07	5,652.70	1.63	111100	10.04		94.63
5,603.34				11/4/09	49.36	47.73	
5,603.56				12/14/09	49.14	47.51	
5,603.84				3/11/10	48.86	47.23	
5,604.31				5/11/10	48.39	46.76	
5,604.28				9/29/10	48.42	46.79	
5,604.39				12/21/10	48.31	46.68	
5,604.20				2/28/11	48.50	46.87	
5,604.55				6/21/11	48.15	46.52	
5,604.74				9/20/11	47.96	46.33	
5,604.94				12/21/11	47.76	46.13	
5,604.84				3/27/12	47.86	46.23	
5,604.85				6/28/12	47.85	46.22	
5,604.99				9/27/12	47.71	46.08	
5,605.10				12/28/12	47.60	45.97	
5,605.22				3/28/13	47.48	45.85	
5,605.11				6/27/13	47.59	45.96	
5,605.39				9/27/13	47.31	45.68	
5,604.99				12/20/13	47.71	46.08	
5,605.71				3/27/14	46.99	45.36	
5,605.16				6/25/14	47.54	45.91	
5,605.10				9/25/14	47.60	45.97	
5,605.25				12/17/14	47.45	45.82	
5,605.04				3/26/15	47.66	46.03	
5,604.99				6/22/15	47.71	46.08	
5,605.05				9/30/15	47.65	46.02	
5,604.96				12/2/15	47.74	46.11	
5,605.25				3/30/16	47.45	45.82	
5,605.00				6/30/16	47.70	46.07	
5,605.00				9/29/16	47.70	46.07	
5,605.00				12/21/16	47.70	46.07	
5,605.43				3/30/17	47.27	45.64	
5,605.20				6/27/17	47.50	45.87	
5605.00				9/26/17	47.70	46.07	
5605.02				11/29/17	47.68	46.05	
5605.11				3/29/18	47.59	45.96	
5605.19				6/22/18	47.51	45.88	
5604.99				9/26/18	47.71	46.08	
5605.18				12/19/18	47.52	45.89	
5605.06				3/26/19	47.64	46.01	
5604.96				6/24/19	47.74	46.11	
5604.87				8/13/19	47.83	46.20	
5605.19				11/19/19	47.51	45.88	
5605.02				2/13/20	47.68	46.05	
5605.30				5/5/20	47.40	45.77	
5604.85				9/22/20	47.85	46.22	
5604.99				12/30/20	47.71	46.08	

Water	Land	Measuring Point			Measured Depth to	Total Depth to	Total
Elevation (WL)	Surface (LSD)	Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Water (blw.MP)	Water (blw.LSD)	Depth Of Well
	5,651.07	5,652.70	1.63				94.63
5604.99				3/11/21	47.71	46.08	
5604.90	290			6/24/21	47.80	46.17	

Water Levels and Data over Time White Mesa Mill - Well TWN -18 Total or

		Measuring			Total or Measured	Total	
Water	Land	Point			Depth to		Total
			T 41.00	D-4 Of		Depth to	
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD) 5,643.95	(MP) 5,645.45	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well 147
5.506.05	3,043.93	5,045.45	1.50	11/0/00	50.60	57.10	14/
5,586.85				11/2/09	58.60	57.10	
5,600.14				12/14/09	45.31	43.81	
5,587.36				3/11/10	58.09	56.59	
5,587.71				5/11/10	57.74	56.24	
5,587.50				9/29/10	57.95	56.45	
5,607.66				12/21/10	37.79	36.29	
5,587.35				2/28/11	58.10	56.60	
5,587.71				6/21/11	57.74	56.24	
5,587.65				9/20/11	57.80	56.30	
5,587.95				12/21/11	57.50	56.00	
5,587.05				3/27/12	58.40	56.90	
5,587.05				6/28/12	58.40	56.90	
5,587.50				9/27/12	57.95	56.45	
5,587.50				12/28/12	57.95	56.45	
5,587.32				3/28/13	58.13	56.63	
5,586.95				6/27/13	58.50	57.00	
5,587.02				9/27/13	58.43	56.93	
5,586.26				12/20/13	59.19	57.69	
5,586.87				3/27/14	58.58	57.08	
5,586.23				6/25/14	59.22	57.72	
5,586.02				9/25/14	59.43	57.93	
5,585.99				12/17/14	59.46	57.96	
5,585.66				3/26/15	59.79	58.29	
5,585.45				6/22/15	60.00	58.50	
5,585.37				9/30/15	60.08	58.58	
5,585.24				12/2/15	60.21	58.71	
5,585.38				3/30/16	60.07	58.57	
5,584.85				6/30/16	60.60	59.10	
5,584.69				9/29/16	60.76	59.26	
5,584.60				12/21/16	60.85	59.35	
5,584.99				3/30/17	60.46	58.96	
5,584.65				6/27/17	60.80	59.30	
5584.36				9/26/17	61.09	59.59	
5584.24				11/29/17	61.21	59.71	
5584.25				3/29/18	61.20	59.70	
5584.23				6/22/18	61.22	59.72	
5583.92				9/26/18	61.53	60.03	
5583.85				12/18/18	61.60	60.10	
5583.72				3/26/19	61.73	60.23	
5583.69				6/24/19	61.76	60.26	
5583.76				8/13/19	61.69	60.19	
5583.72				11/19/19	61.73	60.23	
5583.54				2/13/20	61.91	60.41	
5583.34				5/5/20	62.11	60.61	
5583.15				9/22/20	62.30	60.8	
5583.26				12/30/20	62.19	60.69	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,643.95	5,645.45	1.50				147
5583.36				3/11/21	62.09	60.59	
5583.06				6/24/21	62.39	60.89	

			-, -, -, -, -, -, -, -, -, -, -, -, -, -		Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,659.59	5,661.36	1.77				107.77
5,606.17				11/2/09	55.19	53.42	
5,606.70				12/14/09	54.66	52.89	
5,607.22				3/11/10	54.14	52.37	
5,607.89				5/11/10	53.47	51.70	
5,607.98				9/29/10	53.38	51.61	
5,608.41				12/21/10	52.95	51.18	
5,608.49				2/28/11	52.87	51.10	
5,608.60				6/21/11	52.76	50.99	
5,609.17				9/20/11	52.19	50.42	
5,608.90				12/21/11	52.46	50.69	
5,608.87				3/27/12	52.49	50.72	
5,608.86				6/28/12	52.50	50.73	
5,608.86				9/27/12	52.50	50.73	
5,608.86				12/28/12	52.50	50.73	
5,609.17				3/28/13	52.19	50.42	
5,608.88				6/27/13	52.48	50.71	
5,608.92				9/27/13	52.44	50.67	
5,608.46				12/20/13	52.90	51.13	
5,608.88				3/27/14	52.48	50.71	
5,608.33				6/25/14	53.03	51.26	
5,608.11				9/25/14	53.25	51.48	
5,608.36				12/17/14	53.00	51.23	
5,607.96				3/26/15	53.40	51.63	
5,607.98				6/22/15	53.38	51.61	
5,608.06				9/30/15	53.30	51.53	
5,607.88				12/2/15	53.48	51.71	
5,608.41				3/30/16	52.95	51.18	
5,611.39				6/30/16	49.97	48.20	
5,607.90				9/29/16	53.46	51.69	
5,608.07				12/21/16	53.29	51.52	
5,608.44				3/30/17	52.92	51.15	
5,608.07				6/27/17	53.29	51.52	
5608.06				9/26/17	53.30	51.53	
5607.91				11/29/17	53.45	51.68	
5608.00				3/28/18	53.36	51.59	
5607.71				6/21/18	53.65	51.88	
5607.50				9/26/18	53.86	52.09	
5607.94				12/19/18	53.42	51.65	
5607.42				3/26/19	53.94	52.17	
5607.46				6/25/19	53.90	52.13	
5607.39				8/13/19	53.97	52.20	
5607.84				11/19/19	53.52	51.75	
5607.69				2/13/20	53.67	51.90	
5607.57				5/5/20	53.79	52.02	
5607.46				9/22/20	53.90	52.13	
5607.66				12/30/20	53.70	51.93	

Water Levels and Data over Time White Mesa Mill - Well TWN-19 Total or

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,659.59	5,661.36	1.77				107.77
5607.75				3/11/21	53.61	51.84	
5607.39				6/24/21	53.97	52.20	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,640.46	5,642.46	2.00				95.5
5,564.53				6/24/21	77.93	75.93	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,633.08	5,635.08	2.00				105.7

		Whit	e Mesa Mi	II - Well M			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,613.34	5,614.50	1.16				110
5,534.92				10/24/06	79.58	78.42	
5,535.09				3/16/07	79.41	78.25	
5,535.46				8/27/07	79.04	77.88	
5,535.06				10/15/07	79.44	78.28	
5,535.78				3/15/08	78.72	77.56	
5,536.26				6/15/08	78.24	77.08	
5,536.35				9/15/08	78.15	76.99	
5,536.68				11/15/08	77.82	76.66	
5,535.42				3/15/09	79.08	77.92	
5,537.11				6/30/09	77.39	76.23	
5,536.93				9/10/09	77.57	76.41	
5,537.23				12/11/09	77.27	76.11	
5,537.59				3/11/10	76.91	75.75	
5,537.85				5/11/10	76.65	75.49	
5,538.37				9/29/10	76.13	74.97	
5,537.70				12/21/10	76.13	75.64	
5,537.67				2/28/11	76.83	75.67	
5,538.31				6/21/11	76.19	75.03	
5,538.15				9/20/11	76.35	75.19	
5,538.42				12/21/11	76.08	74.92	
5,538.54				3/27/12	75.96	74.8	
5,538.60				6/28/12	75.90 75.9	74.74	
				9/27/12	75.82	74.74	
5,538.68				12/28/12	75.82 75.51	74.35	
5,538.99						74.33	
5,539.25				3/28/13	75.25 75.45	74.09	
5,539.05				6/27/13			
5,539.60				9/27/13	74.90	73.74	
5,539.67				12/20/13	74.83	73.67 73.57	
5,539.77				3/27/14	74.73 75.10	73.94	
5,539.40				6/25/14			
5,539.19				9/25/14	75.31 75.30	74.15 74.04	
5,539.30				12/17/14	75.20		
5,539.01				3/26/15	75.49	74.33	
5,538.99				6/22/15	75.51	74.35	
5,539.10				9/30/15	75.40	74.24	
5,538.90				12/2/15	75.60	74.44	
5,539.53				3/30/16	74.97	73.81	
5,539.11				6/30/16	75.39	74.23	
5,539.05				9/29/16	75.45	74.29	
5,539.06				12/21/16	75.44	74.28	
5,539.81				3/30/17	74.69	73.53	
5,539.60				6/27/17	74.90	73.74	
5539.40				9/27/17	75.10	73.94	
5539.30				11/30/17	75.20	74.04	
5539.55				3/29/18	74.95	73.79	
5539.63				6/22/18	74.87	73.71	
5539.40				9/26/18	75.10	73.94	
5539.59				12/17/18	74.91	73.75	
5539.42				3/26/19	75.08	73.92	
5539.70				6/24/19	74.80	73.64	
5539.45				8/13/19	75.05	73.89	
5539.53				11/19/19	74.97	73.81	
5539.57				2/13/20	74.93	73.77	
5539.27				5/5/20	75.23	74.07	

Water Elevation (WL)	Land Surface (LSD)	Measuring Point Elevation (MP)	Length Of Riser (L)	Date Of Monitoring	Total or Measured Depth to Water (blw.MP)	Total Depth to Water (blw.LSD)	Total Depth Of Well
	5,613.34	5,614.50	1.16	Wiomtoring	(DIWENTI)	(DIWILDE)	110
5539.25				9/22/20	75.25	74.09	
5539.41				12/30/20	75.09	73.93	
5539.45				3/11/21	75.05	73.89	
5539.34				6/24/21	75.16	74.00	

		******	111054 111	***************************************	Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface		Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
(VII)	5,615.26	5,616.40	1.14	Withintoring	(10144.1411)	(DIW.LSD)	130
5,544.07	3,013.20	3,010.40	1.17	10/24/06	72.33	71.19	130
5,544.45				3/16/07	71.95	70.81	
5,536.94				8/27/07	79.46	78.32	
5,544.62				10/15/07	79.40	70.64	
5,545.37				3/15/08	71.78	69.89	
						70.76	
5,544.50 5,545.94				6/15/08	71.90 70.46		
				9/15/08		69.32	
5,546.42				11/15/08	69.98	68.84	
5,546.03				3/15/09	70.37	69.23	
5,546.65				6/30/09	69.75	68.61	
5,546.45				9/10/09	69.95	68.81	
5,546.75				12/11/09	69.65	68.51	
5,547.09				3/11/10	69.31	68.17	
5,547.41				5/11/10	68.99	67.85	
5,547.28				9/29/10	69.12	67.98	
5,547.45				12/21/10	68.95	67.81	
5,547.37				2/28/11	69.03	67.89	
5,547.96				6/21/11	68.44	67.3	
5,547.65				9/20/11	68.75	67.61	
5,548.34				12/21/11	68.06	66.92	
5,548.30				3/27/12	68.10	66.96	
5,548.40				6/28/12	68.00	66.86	
5,548.59				9/27/12	67.81	66.67	
5,548.91				12/28/12	67.49	66.35	
5,549.14				3/28/13	67.26	66.12	
5,548.90				6/27/13	67.50	66.36	
5,549.25				9/27/13	67.15	66.01	
5,549.16				12/20/13	67.24	66.10	
5,548.95				3/27/14	67.45	66.31	
5,548.60				6/25/14	67.80	66.66	
5,548.19				9/25/14	68.21	67.07	
5,548.25				12/17/14	68.15	67.01	
5,548.14				3/26/15	68.26	67.12	
5,547.85				6/22/15	68.55	67.41	
5,548.00				9/30/15	68.40	67.26	
5,547.84				12/2/15	68.56	67.42	
5,548.35				3/30/16	68.05	66.91	
5,548.00				6/30/16	68.40	67.26	
5,547.80				9/29/16	68.60	67.46	
5,547.80				12/21/16	68.60	67.46	
5,548.30				3/30/17	68.10	66.96	
5,548.10				6/27/17	68.30	67.16	
5,547.93				9/27/17	68.47	67.33	
5,547.80				11/30/17	68.60	67.46	
5,547.92				3/29/18	68.48	67.34	
5,547.95				6/22/18	68.45	67.31	
5,547.69				9/26/18	68.71	67.57	
5,547.82				12/17/18	68.58	67.44	
5,547.56				3/26/19	68.84	67.70	
5,547.68				6/24/19	68.72	67.58	
5,547.56				8/13/19	68.84	67.70	
5,547.58				11/19/19	68.82	67.68	
5,547.59				2/13/20	68.81	67.67	
5,547.92				5/5/20	68.48	67.34	
5,547.18				9/22/20	69.22	68.08	
ا.10 تحرر				1122120	09.44	00.00	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,615.26	5,616.40	1.14				130
5,547.29				12/30/20	69,11	67.97	
5,547.53				3/11/21	68.87	67.73	
5,547.14				6/24/21	69.26	68.12	

Tab G Laboratory Analytical Reports

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-013

Client Sample ID: PIEZ-01 05272021 **Collection Date:**

Received Date:

5/27/2021 912h

6/8/2021

1305h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 647h	E300.0	1.00	69.9	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1943h	E353,2	0.100	7.89	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 6/23/2021 Page 16 of 21

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-012

Client Sample ID: PIEZ-02 05272021 **Collection Date:**

Received Date:

5/27/2021 855h

6/8/2021

1305h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 532h	E300.0	1.00	13.9	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1942h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 6/23/2021 Page 15 of 21

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-014

Client Sample ID: PIEZ-03A 05272021 **Collection Date:**

5/27/2021 930h

Received Date:

6/8/2021

1305h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 711h	E300.0	1.00	85.2	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1944h	E353.2	0.200	14.4	3.

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 6/23/2021 Page 17 of 21

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-004

Client Sample ID: TWN-01_05252021 **Collection Date:**

5/25/2021 922h

Received Date:

6/8/2021

1305h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 124h	E300.0	1.00	34.7	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1928h	E353.2	0.100	3.18	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

2nd Quarter Nitrate 2021

Project: Lab Sample ID:

2106232-005

Client Sample ID: TWN-02 05252021 **Collection Date:**

5/25/2021 930h

Received Date:

6/8/2021

1305h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 148h	E300.0	1.00	61.5	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1929h	E353.2	0.500	13.8	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-007

Collection Date:

Client Sample ID: TWN-03 05272021 5/27/2021 840h

Received Date:

6/8/2021

1305h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 328h	E300.0	2.00	156	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1938h	E353.2	0.200	25.0	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 6/23/2021 Page 10 of 21

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-003

Collection Date:

Client Sample ID: TWN-04_05252021

Received Date:

5/25/2021 847h

6/8/2021 1305h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/22/2021 1535h	E300.0	1.00	23.2	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1927h	E353.2	0.100	1.70	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

Contact: Tanner Holliday

Client: Energy Fuels Resources, Inc.

Project: 2nd Quarter Nitrate 2021

Lab Sample ID: 2106232-006

 Client Sample ID:
 TWN-07_05272021

 Collection Date:
 5/27/2021
 830h

 Received Date:
 6/8/2021
 1305h

Analytical Results

3440 South 700 West 3alt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 213h	E300.0	1.00	129	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1932h	E353.2	0.200	16.4	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 -mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 6/23/2021 Page 9 of 21

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-002

Client Sample ID: TWN-18_05252021 **Collection Date:**

5/25/2021 811h

Received Date:

6/8/2021

1305h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/20/2021 2344h	E300.0	1.00	44.9	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1926h	E353.2	0.100	0.220	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 6/23/2021 Page 5 of 21

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-001

Collection Date:

Client Sample ID: TWN-18R 05252021 5/25/2021 740h

Received Date:

6/8/2021

1305h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/20/2021 2319h	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1925h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 6/23/2021 Page 4 of 21

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-008

Client Sample ID: TWN-20 06032021 **Collection Date:**

6/3/2021 800h

1305h

Received Date: 6/8/2021 Contact: Tanner Holliday

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 353h	E300.0	2.00	50.0	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1939h	E353.2	0.100	1.88	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 6/23/2021 Page 11 of 21

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

1305h

Project:

2nd Ouarter Nitrate 2021

Lab Sample ID:

2106232-009

6/8/2021

Client Sample ID: TWN-21 06032021 **Collection Date:**

Received Date:

6/3/2021 815h

Analytical Results

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 418h	E300.0	2.00	41.9	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1939h	E353.2	0.100	1.03	

Phone: (801) 263-8686

3440 South 700 West Salt Lake City, UT 84119

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2021

Lab Sample ID:

2106354-013

Client Sample ID: TW4-22 06092021 **Collection Date:**

743h

Received Date:

6/9/2021 6/11/2021 955h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/24/2021 400h	E300,0	10.0	408	
Nitrate/Nitrite (as N)	mg/L		6/22/2021 1043h	E353.2	0.500	89.3	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha

QA Officer

Report Date: 6/28/2021 Page 18 of 46

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2021

Lab Sample ID:

2106354-002

Client Sample ID: TW4-24 06092021 **Collection Date:**

6/9/2021 735h

Received Date:

6/11/2021 955h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Method Analyzed Used		Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/23/2021 2147h	E300.0	10.0	938	
Nitrate/Nitrite (as N)	mg/L		6/22/2021 1031h	E353.2	0.500	48.0	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 6/28/2021 Page 7 of 46

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2021

Lab Sample ID:

2106354-001

Client Sample ID: TW4-25 06092021 **Collection Date:**

Received Date:

6/9/2021 726h 6/11/2021 955h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/23/2021 2122h	E300.0	5.00	55.1	
Nitrate/Nitrite (as N)	mg/L		6/22/2021 1026h	E353.2	0.100	1.57	.)

^{&#}x27;- Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 6/28/2021 Page 6 of 46

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-011

Client Sample ID: TWN-60 05252021 **Collection Date:**

5/25/2021 715h

Received Date:

1305h 6/8/2021

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 507h	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1941h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 6/23/2021 Page 14 of 21

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2021

Lab Sample ID:

2106354-016

Client Sample ID: TW4-60 06092021 **Collection Date:**

Received Date:

6/9/2021 1000h 6/11/2021 955h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/24/2021 514h	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		6/22/2021 1048h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 6/28/2021 Page 21 of 46

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2021

Lab Sample ID:

2106232-010

Client Sample ID: TWN-65 05252021 **Collection Date:**

5/25/2021 811h

Received Date:

6/8/2021 1305h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/21/2021 442h	E300.0	1.00	44.1	
Nitrate/Nitrite (as N)	mg/L		6/21/2021 1940h	E353.2	0.100	0.247	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

Tanner Holliday Energy Fuels Resources, Inc. 6425 South Hwy 191 Blanding, UT 84511

TEL: (435) 678-2221

RE: 2nd Quarter Nitrate 2021

Dear Tanner Holliday:

Lab Set ID: 2106232

3440 South 700 West Salt Lake City, UT 84119

American West Analytical Laboratories received sample(s) on 6/8/2021 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

e-mail: awal@awal-labs.com

Fax: (801) 263-8687

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

web: www.awal-labs.com

Jennifer Osborn Laboratory Director The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Jose Rocha
OA Officer

Thank You,

Approved by:

Laboratory Director or designee

Inorganic Case Narrative

Client: Contact:

Project: Lab Set ID: Energy Fuels Resources, Inc.

Tanner Holliday

2nd Quarter Nitrate 2021

2106232

3440 South 700 West Salt Lake City, UT 84119 **Sample Receipt Information:**

Date of Receipt:

6/8/2021

Date of Collection:

5/25-6/3/2021

Sample Condition: C-O-C Discrepancies: Intact None

Toll Free: (888) 263-8686 Holdin

Fax: (801) 263-8687

Phone: (801) 263-8686

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Jennifer Osborn Laboratory Director

> Jose Rocha QA Officer

Holding Time and Preservation Requirements: The analysis and preparation of all samples were performed within the method holding times. All samples were properly preserved.

Preparation and Analysis Requirements: The samples were analyzed following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD:

Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Corrective Action: None required.

SAMPLE SUMMARY

Client:

Energy Fuels Resources, Inc.

2nd Quarter Nitrate 2021

Project: Lab Set ID:

2106232

Date Received: 6/8/2021 1305h

Contact: Tanner Holliday

	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
3440 South 700 West	2106232-001A	TWN-18R_05252021	5/25/2021	740h	Aqueous	Nitrite/Nitrate (as N), E353.2
Salt Lake City, UT 84119	2106232-001B	TWN-18R_05252021	5/25/2021	740h	Aqueous	Anions, E300.0
	2106232-002A	TWN-18_05252021	5/25/2021	811h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106232-002B	TWN-18_05252021	5/25/2021	811h	Aqueous	Anions, E300.0
Phone: (801) 263-8686	2106232-003A	TWN-04_05252021	5/25/2021	847h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686	2106232-003B	TWN-04_05252021	5/25/2021	847h	Aqueous	Anions, E300.0
Fax: (801) 263-8687	2106232-004A	TWN-01_05252021	5/25/2021	922h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106232-004B	TWN-01_05252021	5/25/2021	922h	Aqueous	Anions, E300.0
३-mail: awal@awal-labs.com	2106232-005A	TWN-02_05252021	5/25/2021	930h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106232-005B	TWN-02_05252021	5/25/2021	930h	Aqueous	Anions, E300.0
web: www.awal-labs.com	2106232-006A	TWN-07_05272021	5/27/2021	830h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106232-006B	TWN-07_05272021	5/27/2021	830h	Aqueous	Anions, E300.0
	2106232-007A	TWN-03_05272021	5/27/2021	840h	Aqueous	Nitrite/Nitrate (as N), E353.2
Jennifer Osborn	2106232-007B	TWN-03_05272021	5/27/2021	840h	Aqueous	Anions, E300.0
Laboratory Director	2106232-008A	TWN-20_06032021	6/3/2021	800h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106232-008B	TWN-20_06032021	6/3/2021	800h	Aqueous	Anions, E300.0
Jose Rocha	2106232-009A	TWN-21_06032021	6/3/2021	815h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	2106232-009B	TWN-21_06032021	6/3/2021	815h	Aqueous	Anions, E300.0
	2106232-010A	TWN-65_05252021	5/25/2021	811h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106232-010B	TWN-65_05252021	5/25/2021	811h	Aqueous	Anions, E300.0
	2106232-011A	TWN-60_05252021	5/25/2021	715h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106232-011B	TWN-60_05252021	5/25/2021	715h	Aqueous	Anions, E300.0
	2106232-012A	PIEZ-02_05272021	5/27/2021	855h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106232-012B	PIEZ-02_05272021	5/27/2021	855h	Aqueous	Anions, E300.0
	2106232-013A	PIEZ-01_05272021	5/27/2021	912h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106232-013B	PIEZ-01_05272021	5/27/2021	912h	Aqueous	Anions, E300.0
	2106232-014A	PIEZ-03A_05272021	5/27/2021	930h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106232-014B	PIEZ-03A_05272021	5/27/2021	930h	Aqueous	Anions, E300.0

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc. Client:

Lab Set ID: 2106232

Project: 2nd Quarter Nitrate 2021

Tanner Holliday Contact:

Dept: WC

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Lab Sample ID: Test Code:	LCS-R153435 300.0-W	Date Analyzed:	06/20/202	1 2254h										
Chloride		5.01	mg/L	E300.0	0.0198	0.100	5.000	0	100	90 - 110				
Lab Sample ID: Test Code:	LCS-R153455 300.0-W	Date Analyzed:	06/22/202	/22/2021 1510h										
Chloride		5.00	mg/L	E300.0	0.0198	0.100	5.000	0	99.9	90 - 110				
Lab Sample ID: Test Code:	LCS-R153408 NO2/NO3-W-353.2	Date Analyzed:	06/21/202	1 1924h										
Nitrate/Nitrite (a	s N)	1.02	mg/L	E353,2	0.00541	0.0100	1.000	0	102	90 - 110				

American West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 2106232

Project: 2nd Quarter Nitrate 2021

Contact: Tanner Holliday

Dept: WC

QC Type: MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	MB-R153435 300.0-W	Date Analyzed:	06/20/202	1 2230h									5	
Chloride		< 0.100	mg/L	E300.0	0.0198	0.100								
Lab Sample ID: Test Code:	MB-R153455 300.0-W	Date Analyzed:	06/22/202	1 1445h										
Chloride		< 0.100	mg/L	E300.0	0.0198	0.100								
Lab Sample ID: Test Code:	MB-R153408 NO2/NO3-W-353.2	Date Analyzed:	06/21/202	1 1923h										
Nitrate/Nitrite (as	; N)	< 0.0100	mg/L	E353,2	0.00541	0.0100								

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc. Client:

Lab Set ID: 2106232

Project: 2nd Quarter Nitrate 2021

Tanner Holliday Contact:

WC Dept:

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	2106232-012BMS 300.0-W	Date Analyzed:	06/21/202	1 557h					ē.					
Chloride		64.3	mg/L	E300.0	0.198	1.00	50.00	13.9	101	90 - 110				
Lab Sample ID: Test Code:	2106232-003BMS 300.0-W	Date Analyzed:	06/22/202	1 1600h										
Chloride		123	mg/L	E300.0	0.396	2.00	100.0	23.2	100	90 - 110				
Lab Sample ID: Test Code:	2106232-005AMS NO2/NO3-W-353.2	Date Analyzed:	06/21/202	1 1930h								-		
Nitrate/Nitrite (as	N)	65.5	mg/L	E353_2	0.270	0.500	50.00	13.8	103	90 - 110				
Lab Sample ID: Test Code:	2106232-014AMS NO2/NO3-W-353.2	Date Analyzed:	06/21/202	1 1945h										
Nitrate/Nitrite (as	N)	32.4	mg/L	E353.2	0.108	0.200	20.00	14.4	89.6	90 - 110				§

^{§ -} OC limits are set with an accuracy of two significant figures, therefore the recovery rounds to an acceptable value within the control limits.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc. Client:

Lab Set ID: 2106232

Project:

2nd Quarter Nitrate 2021

Tanner Holliday Contact:

WC Dept:

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	2106232-012BMSD 300.0-W	Date Analyzed:	06/21/202	1 622h										
Chloride		64.1	mg/L	E300.0	0.198	1.00	50.00	13.9	101	90 - 110	64.3	0.212	20	
Lab Sample ID: Test Code:	2106232-003BMSD 300.0-W	Date Analyzed:	06/22/202	1 1645h										
Chloride		123	mg/L	E300.0	0.396	2.00	100.0	23.2	99.8	90 - 110	123	0.211	20	
Lab Sample ID: Test Code:	2106232-005AMSD NO2/NO3-W-353.2	Date Analyzed:	06/21/202	1 1931h										
Nitrate/Nitrite (as	N)	65.9	mg/L	E353,2	0.270	0.500	50.00	13.8	104	90 - 110	65.5	0.676	10	
Lab Sample ID: Test Code:	2106232-014AMSD NO2/NO3-W-353.2	Date Analyzed:	06/21/202	1 1946h										
Nitrate/Nitrite (as	N)	29.6	mg/L	E353.2	0.108	0.200	20.00	14.4	76.1	90 - 110	32.4	8.75	10	1

¹ - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

UL Denison

WORK ORDER Summary

Work Order: 2106232

Page 1 of 2

Client: Energy Fuels Resources, Inc. Due Date: 6/22/2021

Client ID:

ENE300

Contact:

Tanner Holliday

Project:

2nd Quarter Nitrate 2021

QC Level:

Ш

WO Type: Project

Commontes	OC 2 (no observato grama)	EDD Donison	CC VIVair al Compression and Do not were !!	*D !	I samuelas as MCAICD.
Comments:	QC 3 (no enromatograms).	EDD-Denison.	CC KWeinel@energyfuels.com; Do not use ""	K_	samples as MS/MSD.;

	QC 3 (no chromatograms). EDD-De				-				
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage			
2106232-001A	TWN-18R_05252021	5/25/2021 0740h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1		
2106232-001B				300.0-W I SEL Analytes: CL		DF-cl			
2106232-002A	TWN-18_05252021	5/25/2021 0811h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1		
2106232-002B				300.0-W 1 SEL Analytes: CL		DF-ci			
2106232-003A	TWN-04_05252021	5/25/2021 0847h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NQ2/NO3	1		
2106232-003B				300.0-W 1 SEL Analytes: CL		DF-cl			
2106232-004A	TWN-01_05252021	5/25/2021 0922h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1		
2106232-004B				300.0-W 1 SEL Analytes: CL		DF-cl			
2106232-005A	TWN-02_05252021	5/25/2021 0930h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1		
2106232-005B				300.0-W 1 SEL Analytes: CL		DF-cl			
2106232-006A	TWN-07_05272021	5/27/2021 0830h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3			
2106232-006B				300.0-W 1 SEL Analytes: CL		DF-cl			
2106232-007A	TWN-03_05272021	5/27/2021 0840h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3			
2106232-007B				300.0-W 1 SEL Analytes: CL		DF-cl			

CN 🗌

WORK ORDER Summary

Work Order: **2106232**

Page 2 of 2

Client:

Printed: 06/08/21 13:55

Energy Fuels Resources, Inc.

Due Date: 6/22/2021

спен:	t: Energy Fuels Resources, Inc.				Du	e Date. 6/22/2021	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
2106232-008A	TWN-20_06032021	6/3/2021 0800h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1
2106232-008B				300.0-W 1 SEL Analytes: CL		DF-cl	
2106232-009A	TWN-21_06032021	6/3/2021 0815h	6/8/2021 1305h	NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1
2106232-009B				300.0-W 1 SEL Analytes: CL		DF-cl	
2106232-010A	TWN-65_05252021	5/25/2021 0811h	6/8/2021 1305h	NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1
2106232-010B				300.0-W 1 SEL Analytes: CL		DF-cl	
2106232-011A	TWN-60_05252021	5/25/2021 0715h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1
2106232-011B				300.0-W 1 SEL Analytes: CL		DF-cl	
2106232-012A	PIEZ-02_05272021	5/27/2021 0855h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1
2106232-012B				300.0-W 1 SEL Analytes: CL		DF-cl	
2106232-013A	PIEZ-01_05272021	5/27/2021 0912h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1
2106232-013B				300.0-W 1 SEL Analytes: CL		DF-cl	
2106232-014A	PIEZ-03A_05272021	5/27/2021 0930h	6/8/2021 1305h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	DF-NO2/NO3	1
2106232-014B	<u>-1</u>			300.0-W 1 SEL Analytes: CL		DF-cl	

American West **Analytical Laboratories**

463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686

CHAIN OF CUSTODY

Turn Around Time:

All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (PQL) unless specifically requested otherwise on this Chaln of Custody and/or attached documentation.

AWAL Lab Sample Set # Page Due Date: Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on

	www.awal-labs.c	om		L			3		_ _			Stan	ndard		the day they are due.	
Client:	Energy Fuels Resources, Inc.			Γ		Г			16						X Include EDD:	Laboratory Use Only
Address:	6425 S. Hwy. 191						ì				1				LOCUS UPLOAD EXCEL	Samples Were: W
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Blanding, UT 84511			1									1		Field Filtered For:	1 Shipped or hand delivered
Contact:	Tanner Holliday			1									1			2 Ambient or Chilled
Phone #:	(435) 678-2221 Cell #:			1									1 1		For Compliance With: NELAP	3 Temperature / 9 °C
Email:	the Mile - Consequence on the Walnel Consequence	iels.com		1				11					1	- 1	□ RCRA □ CWA	4 Received Broken/Leaking
Project Name:	2nd Quarter Nitrate 2021														□ SDWA □ ELAP/A2LA	(Improperly Sealed)
Project #.						73	0.0							1	□ NLLAP □ Non-Compliance	5 Peoperly Preserved
, PO #.				p		(353.2)	-300.0)					1			□ Other:	V N Checked at bench
Sampler Name:	Tanner Holliday			Containers	Matrix		00 or	11							V	N Received Within
	Sample ID:	Date Sampled	Time Sampled	# of Con	Sample Matrix	NO2/NO3	CI (4500								Known Hazards & Sample Comments	Halding Times
TWN-18R_052520	021	5/25/2021	740	2	w	Х	x									
TWN-18_0525202	21	5/25/2021	811	2	w	Х	х									COC Tape Was:
TWN-04_0525202	21	5/25/2021	847	2	W	х	х									Present on Outer Package N NA
TWN-01_0525202	21	5/25/2021	922	2	w	х	х									2 Junbroken on Outer Package
TWN-02_0525202	21	5/25/2021	930	2	w	Х	X									Y) N NA
TWN-07_0527202	21	5/27/2021	830	2	w	Х	х									3 Present on Sample (NA)
TWN-03_0527202	21	5/27/2021	840	2	w	Х	х									4 Unbroken on Sample
TWN-20_060320	21	6/3/2021	800	2	w	х	x									Y N (NA)
TWN-21_060320	21	6/3/2021	815	2	w	Х	Х									Discrepancies Between Sample
TWN-65_052520	21	5/25/2021	811	2	w	Х	x	*							T	Labels and COC Record?
TWN-60_052520	21	5/25/2021	715	2	W	х	х									
PIEZ-02_052720	21	5/27/2021	855	2	w	Х	X									
PIEZ-01_052720	21	5/27/2021	912	2	W	Х	X									
Relinquished by:	aprece Holleday	Date: 6/7/2021	Received by: Signature								Date	:			Special Instructions:	
	Tanner Holliday	Time:	Print Name:					,			Time	K	. 3	,		
Print Name; Relinquished by: Signature		Date:	Received by: Signature	1	42	m		Stay		z/	Date	6/	8/2	./]	
		Time:	Print Name:	2/0	24		Han	100	-4	1	Time	· /.	305			
Print Name: Relinquished by: Signature		Date:	Received by: Signature				7				Date	:				
		Time:	Print Name:							N	Time	9:				
Print Name: Relinquished by: Signature		Date:	Received by: Signature								Date	:				
		Time:									Time					

QC Level:

Print Name:

American West **Analytical Laboratories**

Time:

Print Name:

CHAIN OF CUSTODY

2/06237

463 W. 3600 S. Salt Lake City, UT 84115 AWAL Lab Sample Set # All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation, Phone # (801) 263-8686 Toll Free # (888) 263-8686 Due Date: Fax # (801) 263-8687 Email awal@awal-labs.com QC Level: **Turn Around Time:** Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on www.awal-labs.com 3 Standard the day they are due. Laboratory Use Only Energy Fuels Resources, Inc. Include EDD: LOCUS UPLOAD 6425 S. Hwy. 191 Samples Were: WP5 Address: EXCEL Field Filtered For: Blanding, UT 84511 Contact: Tanner Holliday For Compliance With: (435) 678-2221 Cell #: □ NELAP Phone #: ☐ RCRA tholliday@energyfuels.com; KWeinel@energyfuels.com CWA SDWA 2nd Quarter Nitrate 2021 Project Name: ELAP / A2LA □ NLLAP (4500 or 300.0) Project #: NO2/NO3 (353.2) Non-Compliance ☐ Other: Sampler Name: Tanner Holliday 6 Received Within Known Hazards Date Time ប Sample ID: Sampled Sampled Sample Comments 5/27/2021 PIEZ-03A 05272021 930 X X COC Tape Was: Present on Outer Package Jinbroken on Outer Package 3 Present on Sample (IA) 4 Unbroken on Sample (NA Discrepancies Between Sample Labels and COC Record? Received by: Special Instructions: 6/7/2021 Signature Time: Tanner Holliday Print Name: Relinquished by: Signature Time: 1345 Print Name: Received by: Relinguished by: Signature Signature Print Name Relinguished by Signature ignature

Lab Set ID:	2106232	
pH Lot #:	6700	

Preservation Check Sheet

Sample Set Extension and pH

Analysis	Preservative	1	2	3	4	5	G	7	8	7	10	11	12	13	14	
Ammonia	pH <2 H ₂ SO ₄															
COD	pH <2 H ₂ SO ₄															
Cyanide	pH>10 NaOH															
Metals	pH <2 HNO ₃															
NO ₂ /NO ₃	pH <2 H ₂ SO ₄	Y25	1/25	1/15	1/25	1/05	1/25	1/25	1/25	1/25	1/15	Ves	Yes	1/18	45	
O & G	pH <2 HCL	/	1		1	10		1		1		/	-	1	1	
Phenols	pH <2 H ₂ SO ₄		V													
Sulfide	pH >9 NaOH, ZnAC															
TKN	pH <2 H ₂ SO ₄															
T PO ₄	pH <2 H ₂ SO ₄															
Cr VI+	pH >9 (NH ₄) ₂ SO ₄															
				-		-			ļ							
										+		-		-		
		1		+												

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- The sample was received unpreserved.
- ▲ The sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH \leq 2 due to the sample matrix.
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference.

Tanner Holliday Energy Fuels Resources, Inc. 6425 South Hwy 191 Blanding, UT 84511

TEL: (435) 678-2221

RE: 2nd Quarter Chloroform 2021

Dear Tanner Holliday:

Lab Set ID: 2106354

3440 South 700 West Salt Lake City, UT 84119

American West Analytical Laboratories received sample(s) on 6/11/2021 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is

web: www.awal-labs.com

Jennifer Osborn Laboratory Director intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Jose Rocha

QA Officer

Thank You,

Jose G. Digitally signed by Jose G. Rocha Date: 2021.06.28 16:50:10 -06'00'

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Tanner Holliday

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2021

Lab Set ID:

2106354

Date Received:

6/11/2021 955h

2440 2 - 1 700 11	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
3440 South 700 West	2106354-001A	TW4-25_06092021	6/9/2021	726h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	2106354-001B	TW4-25_06092021	6/9/2021	726h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106354-001C	TW4-25_06092021	6/9/2021	726h	Aqueous	VOA by GC/MS Method 8260D/5030C
Phone: (801) 263-8686	2106354-002A	TW4-24_06092021	6/9/2021	735h	Aqueous	Anions, E300.0
	2106354-002B	TW4-24_06092021	6/9/2021	735h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	2106354-002C	TW4-24_06092021	6/9/2021	735h	Aqueous	VOA by GC/MS Method 8260D/5030C
e-mail: awal@awal-labs.com	2106354-003A	TW4-21_06092021	6/9/2021	717h	Aqueous	Anions, E300.0
	2106354-003B	TW4-21_06092021	6/9/2021	717h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	2106354-003C	TW4-21_06092021	6/9/2021	717h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2106354-004A	TW4-40_06092021	6/9/2021	903h	Aqueous	Anions, E300.0
Jennifer Osborn	2106354-004B	TW4-40_06092021	6/9/2021	903h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	2106354-004C	TW4-40_06092021	6/9/2021	903h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2106354-005A	TW4-02_06092021	6/9/2021	822h	Aqueous	Anions, E300.0
Jose Rocha	2106354-005B	TW4-02_06092021	6/9/2021	822h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	2106354-005C	TW4-02_06092021	6/9/2021	822h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2106354-006A	TW4-01_06092021	6/9/2021	836h	Aqueous	Anions, E300.0
	2106354-006B	TW4-01_06092021	6/9/2021	836h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106354-006C	TW4-01_06092021	6/9/2021	836h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2106354-007A	TW4-04_06092021	6/9/2021	854h	Aqueous	Anions, E300.0
	2106354-007B	TW4-04_06092021	6/9/2021	854h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106354-007C	TW4-04_06092021	6/9/2021	854h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2106354-008A	MW-04_06092021	6/9/2021	830h	Aqueous	Anions, E300.0
	2106354-008B	MW-04_06092021	6/9/2021	830h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106354-008C	MW-04_06092021	6/9/2021	830h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2106354-009A	TW4-41_06092021	6/9/2021	847h	Aqueous	Anions, E300.0
	2106354-009B	TW4-41_06092021	6/9/2021	847h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106354-009C	TW4-41_06092021	6/9/2021	847h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2106354-010A	TW4-11_06092021	6/9/2021	813h	Aqueous	Anions, E300.0

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2021

Lab Set ID:

2106354

Date Received:

6/11/2021 955h

Contact: Tanner Holliday

	Lab Sample ID	Client Sample ID	Date Colle	ected	Matrix	Analysis
	2106354-010B	TW4-11_06092021	6/9/2021	813h	Aqueous	Nitrite/Nitrate (as N), E353.2
3440 South 700 West	2106354-010C	TW4-11_06092021	6/9/2021	813h	Aqueous	VOA by GC/MS Method 8260D/5030C
Salt Lake City, UT 84119	2106354-011A	TW4-39_06092021	6/9/2021	758h	Aqueous	Anions, E300.0
	2106354-011B	TW4-39_06092021	6/9/2021	758h	Aqueous	Nitrite/Nitrate (as N), E353.2
DI (001) 0.02 0.00	2106354-011C	TW4-39_06092021	6/9/2021	758h	Aqueous	VOA by GC/MS Method 8260D/5030C
Phone: (801) 263-8686	2106354-012A	MW-26_06092021	6/9/2021	806h	Aqueous	Anions, E300.0
Toll Free: (888) 263-8686	2106354-012B	MW-26_06092021	6/9/2021	806h	Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687 e-mail: awal@awal-labs.com	2106354-012C	MW-26_06092021	6/9/2021	806h	Aqueous	VOA by GC/MS Method 8260D/5030C
Ü	2106354-013A	TW4-22_06092021	6/9/2021	743h	Aqueous	Anions, E300.0
web: www.awal-labs.com	2106354-013B	TW4-22_06092021	6/9/2021	743h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106354-013C	TW4-22_06092021	6/9/2021	743h	Aqueous	VOA by GC/MS Method 8260D/5030C
Jennifer Osborn	2106354-014A	TW4-19_06092021	6/9/2021	650h	Aqueous	Anions, E300.0
	2106354-014B	TW4-19_06092021	6/9/2021	650h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	2106354-014C	TW4-19_06092021	6/9/2021	650h	Aqueous	VOA by GC/MS Method 8260D/5030C
Jose Rocha	2106354-015A	TW4-37_06092021	6/9/2021	751h	Aqueous	Anions, E300.0
QA Officer	2106354-015B	TW4-37_06092021	6/9/2021	751h	Aqueous	Nitrite/Nitrate (as N), E353.2
2	2106354-015C	TW4-37_06092021	6/9/2021	751h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2106354-016A	TW4-60_06092021	6/9/2021	1000h	Aqueous	Anions, E300.0
	2106354-016B	TW4-60_06092021	6/9/2021	1000h	Aqueous	Nitrite/Nitrate (as N), E353.2
	2106354-016C	TW4-60_06092021	6/9/2021	1000h	Aqueous	VOA by GC/MS Method 8260D/5030C
	2106354-017A	Trip Blank	6/9/2021	650h	Aqueous	VOA by GC/MS Method 8260D/5030C

Inorganic Case Narrative

Client:

Energy Fuels Resources, Inc.

Contact:

Tanner Holliday

Project: Lab Set ID: 2nd Quarter Chloroform 2021

2106354

3440 South 700 West Salt Lake City, UT 84119 Sample Receipt Information:

Date of Receipt:

6/11/2021

Date of Collection:

6/9/2021

Sample Condition:

Intact

C-O-C Discrepancies:

None

Toll Free: (888) 263-8686

Phone: (801) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

samples were performed within the method holding times. All samples were properly preserved.

Holding Time and Preservation Requirements: The analysis and preparation of all

Preparation and Analysis Requirements: The samples were analyzed following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Jennifer Osborn Laboratory Director

Batch QC Requirements: MB, LCS, MS, MSD, RPD:

Jose Rocha

QA Officer

Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, with the following exceptions:

Sample ID	Analyte	QC	Explanation
2106354-001B	Nitrate/Nitrite	MS/MSD	Sample matrix interference
2106354-015B	Nitrate/Nitrite	MS/MSD	High analyte concentration

Duplicate (DUP): The parameters that required a duplicate analysis had RPDs within the control limits.

Corrective Action: None required.

Volatile Case Narrative

Client:

Energy Fuels Resources, Inc.

Contact:

Tanner Holliday

Project: Lab Set ID: 2nd Quarter Chloroform 2021

2106354

3440 South 700 West

Sample Receipt Information:

Date of Receipt:

Salt Lake City, UT 84119

6/11/2021 6/9/2021

Date of Collection:

0/9/202

Sample Condition: C-O-C Discrepancies: Intact

Method:

None

Method

SW-846 8260D/5030C

Analysis:

Volatile Organic Compounds

Toll Free: (888) 263-8686 Fax: (801) 263-8687

Phone: (801) 263-8686

General Set Comments: No target analytes were observed above reporting limits.

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Holding Time and Preservation Requirements: All samples were received in appropriate containers and properly preserved. The analysis and preparation of all samples were performed within the method holding times following the methods stated on the analytical reports.

Jennifer Osborn Laboratory Director **Analytical QC Requirements:** All instrument calibration and calibration check requirements were met, with CCV exceptions noted on the reports. All internal standard recoveries met method criterion.

Jose Rocha
OA Officer

Batch QC Requirements: MB, LCS, MS, MSD, RPD, and Surrogates:

Method Blanks (MBs): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Sample (LCSs): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicate (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, with the following exception: the MS percent recovery on sample 2106354-012C for Chloroform was outside of the control limits due to sample matrix interference.

Surrogates: All surrogate recoveries were within established limits.

Corrective Action: None required.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn
Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:

Energy Fuels Resources, Inc.

Lab Set ID: 2106354

American West

Project: 2nd Qu

2nd Quarter Chloroform 2021

Contact: Tanner Holliday

Dept: WC

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R153558 300.0-W	Date Analyzed:	06/23/202	21 2057h										
Chloride		4.95	mg/L	E300.0	0.0198	0.100	5.000	0	98.9	90 - 110				
Lab Sample ID: Test Code:	LCS-153438 NO2/NO3-W-353.2	Date Analyzed:	06/22/202	21 1025h										
Nitrate/Nitrite (a	s N)	0.922	mg/L	E353,2	0.00541	0.0100	1.000	0	92.2	90 - 110				

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 2106354

Project: 2nd Quarter Chloroform 2021

Contact: Tanner Holliday

Dept: WC

QC Type: MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Lab Sample ID: Test Code:	MB-R153558 300.0-W	Date Analyzed:	06/23/202	1 2032h										
Chloride		< 0.100	mg/L	E300.0	0.0198	0.100								
Lab Sample ID: Test Code:	MB-153438 NO2/NO3-W-353.2	Date Analyzed:	06/22/202	1 1024h										
Nitrate/Nitrite (a	s N)	< 0.0100	mg/L	E353,2	0.00541	0.0100								

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha **QA** Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc. Client:

Lab Set ID: 2106354

Project:

2nd Quarter Chloroform 2021

Tanner Holliday Contact: Dept: WC

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	2106354-007AMS 300.0-W	Date Analyzed:	06/24/202	1 016h										
Chloride		139	mg/L	E300,0	0.396	2.00	100.0	39.4	99.7	90 - 110				
Lab Sample ID: Test Code:	2106354-016AMS 300.0-W	Date Analyzed:	06/24/202	1 629h										
Chloride		24.7	mg/L	E300.0	0.0990	0.500	25.00	0	98.8	90 - 110				
Lab Sample ID: Test Code:	2106354-001BMS NO2/NO3-W-353.2	Date Analyzed:	06/22/202	1 1027h										
Nitrate/Nitrite (as	N)	14.4	mg/L	E353,2	0.0541	0.100	10.00	1.57	128	90 - 110				j.
Lab Sample ID: Test Code:	2106354-015BMS NO2/NO3-W-353.2	Date Analyzed:	06/22/202	1 1046h										
Nitrate/Nitrite (as	N)	98.6	mg/L	E353.2	0.270	0.500	50.00	26.6	144	90 - 110				2

¹ - Matrix spike recovery indicates matrix interference, The method is in control as indicated by the LCS.

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jennifer Osborn Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 2106354

Project: 2nd Quarter

Client:

2nd Quarter Chloroform 2021

Contact: Tanner Holliday

Dept: WC **QC Type:** MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	2106354-007AMSD 300.0-W	Date Analyzed:	06/24/202	1 131h										
Chloride		138	mg/L	E300.0	0.396	2.00	100.0	39.4	98.6	90 - 110	139	0.827	20	
Lab Sample ID: Test Code:	2106354-016AMSD 300.0-W	Date Analyzed:	06/24/202	1 654h										
Chloride		24.9	mg/L	E300.0	0.0990	0.500	25,00	0	99.5	90 - 110	24.7	0.653	20	
Lab Sample ID: Test Code:	2106354-001BMSD NO2/NO3-W-353.2	Date Analyzed:	06/22/202	1 1030h						•				
Nitrate/Nitrite (as	s N)	14.4	mg/L	E353.2	0.0541	0.100	10.00	1.57	128	90 - 110	14.4	0.115	10	ı
Lab Sample ID: Test Code:	2106354-015BMSD NO2/NO3-W-353.2	Date Analyzed:	06/22/202	1 1047h										
Nitrate/Nitrite (as	s N)	94.1	mg/L	E353,2	0.270	0.500	50.00	26.6	135	90 - 110	98.6	4.65	10	2

¹-Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

² - Analyte concentration is too high for accurate matrix spike recovery and/or RPD.

WORK ORDER Summary

Work Order: 2106354

Page 1 of 3

Client:

Energy Fuels Resources, Inc.

Due Date: 6/25/2021

Client ID:

ENE300

Contact:

Tanner Holliday

Project:

2nd Quarter Chloroform 2021

QC Level: II

III

WO Type: Project

X

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
2106354-001A	TW4-25_06092021	6/9/2021 0726h	6/11/2021 0955h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df - wc	
2106354-001B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		~	df - no2/no3	180 \$ 10 180 \$ 0000
2106354-001C				8260D-W-DEN100 Test Group: 8260D-W-DEN	100; # of Analytes: 4 / #	of Surr: 4	VOCFridge	3
2106354-002A	TW4-24_06092021	6/9/2021 0735h	6/11/2021 0955h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df-wc	1
2106354-002B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	10.10	Y	df - no2/no3	
2106354-002C				8260D-W-DEN100 Test Group: 8260D-W-DEN	100; # of Analytes: 4 / #	of Surr: 4	VOCFridge	3
2106354-003A	TW4-21_06092021	6/9/2021 0717h	6/11/2021 0955h	300.0-W 1 SEL Analytes: CL	Aqueous	Ø	df-wc	Ì
2106354-003B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		~	df - no2/no3	
2106354-003C				8260D-W-DEN100 Test Group: 8260D-W-DEN	100; # of Analytes: 4 / #	of Surr: 4	VOCFridge	2
2106354-004A	TW4-40_06092021	6/9/2021 0903h	6/11/2021 0955h	300.0-W 1 SEL Analytes: CL	Aqueous	Y	df-we	
2106354-004B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		\(\)	df - no2/no3	******
2106354-004C			*****	8260D-W-DEN100 Test Group: 8260D-W-DEN	100; # of Analytes: 4 / #	of Surr: 4	VOCFridge	
2106354-005A	TW4-02_06092021	6/9/2021 0822h	6/11/2021 0955h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df-wc	
2106354-005B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		V	df - no2/no3	
2106354-005C		*****		8260D-W-DEN100 Test Group: 8260D-W-DEN		of Surr: 4	VOCFridge	

WORK ORDER Summary Work Order: 2106354 Page 2 of 3 Client: Energy Fuels Resources, Inc. Due Date: 6/25/2021 Sample ID **Collected Date** Client Sample ID Received Date **Test Code** Matrix Sel Storage 2106354-006A TW4-01 06092021 6/9/2021 0836h 6/11/2021 0955h 300.0-W df-wc Aqueous 1 SEL Analytes: CL 2106354-006B NO2/NO3-W-353.2 df - no2/no3 1 SEL Analytes: NO3NO2N **VOCFridge** 2106354-006C 8260D-W-DEN100 Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 6/9/2021 0854h 300.0-W 2106354-007A TW4-04 06092021 6/11/2021 0955h Aqueous df-wc 1 SEL Analytes: CL NO2/NO3-W-353.2 2106354-007B df - no2/no3 1 SEL Analytes: NO3NO2N 8260D-W-DEN100 **VOCFridge** 2106354-007C Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 2106354-008A MW-04 06092021 6/9/2021 0830h 6/11/2021 0955h 300.0-W df-wc Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 2106354-008B 1 SEL Analytes: NO3NO2N 2106354-008C 8260D-W-DEN100 **VOCFridge** Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 6/9/2021 0847h 6/11/2021 0955h 300.0-W df - wc 2106354-009A TW4-41 06092021 Aqueous I SEL Analytes: CL NO2/NO3-W-353.2 df-no2/no3 2106354-009B 1 SEL Analytes: NO3NO2N 2106354-009C 8260D-W-DEN100 **VOCFridge** Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 2106354-010A TW4-11 06092021 6/9/2021 0813h 6/11/2021 0955h 300.0-W Aqueous df-wc 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 2106354-010B 1 SEL Analytes: NO3NO2N 2106354-010C 8260D-W-DEN100 **VOCFridge** Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 300.0-W df-wc 2106354-011A TW4-39 06092021 6/9/2021 0758h 6/11/2021 0955h Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 2106354-011B 1 SEL Analytes: NO3NO2N VOCFridge 8260D-W-DEN100 2106354-011C Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 Printed: 06/16/21 12:11 LABORATORY CHECK: %M RT 🗌 CN [TAT ["] QC [LUO [] HOK HOK HOK **COC** Emailed

WORK ORDER Summary Work Order: 2106354 Page 3 of 3 Energy Fuels Resources, Inc. Client: Due Date: 6/25/2021 Sample ID Client Sample ID Collected Date Received Date Test Code Matrix Sel Storage MW-26 06092021 6/9/2021 0806h 6/11/2021 0955h 300.0-W df-wc 2106354-012A Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 2106354-012B df - no2/no3 1 SEL Analytes: NO3NO2N 2106354-012C 8260D-W-DEN100 VOCFridge Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 6/9/2021 0743h 300.0-W 2106354-013A TW4-22 06092021 6/11/2021 0955h Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 2106354-013B 1 SEL Analytes: NO3NO2N **VOCFridge** 2106354-013C 8260D-W-DEN100 Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 2106354-014A TW4-19_06092021 6/9/2021 0650h 6/11/2021 0955h 300.0-W Aqueous 1 SEL Analytes: CL 2106354-014B NO2/NO3-W-353.2 df - no2/no3 I SEL Analytes: NO3NO2N **VOCFridge** 8260D-W-DEN100 2106354-014C Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 TW4-37_06092021 6/9/2021 0751h 6/11/2021 0955h 300.0-W Aqueous 2106354-015A 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 2106354-015B 1 SEL Analytes: NO3NO2N VOCFridge 8260D-W-DEN100 2106354-015C Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 300.0-W 6/9/2021 1000h 6/11/2021 0955h df-wc 2106354-016A TW4-60_06092021 Aqueous 1 SEL Analytes: CL 2106354-016B NO2/NO3-W-353.2 df - no2/no3 1 SEL Analytes: NO3NO2N VOCFridge 2106354-016C 8260D-W-DEN100 Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 VOCFridge 6/9/2021 0650h 6/11/2021 0955h 8260D-W-DEN100 2106354-017A Trip Blank Aqueous Test Group: 8260D-W-DEN100; # of Analytes: 4 / # of Surr: 4 Printed: 06/16/21 12:11 LABORATORY CHECK: %M RT CN [TAT QC [LUO [HOK HOK HOK COC Emailed

American West **Analytical Laboratories**

463 W. 3600 S. Salt Lake City, UT 84115

CHAIN OF CUSTODY

2106354	
AWAL Lab Sample Sa	#

	Phone # (801) 263-8686 Toll Free #			All	т апату											ng AWAL's standard analyte lists and reporting nd/or attached documentation.	Page 1 of 2
	Fax # (801) 263-8687 Email aw	al@awal-labs.com				QC	Level	:			Turn	Arou	nd Tin	ne:		Unless other arrangements have been made,	Due Date:
	www.awal-labs.co	m					3					Stand	ard			signed reports will be emalled by 5:00 pm on the day they are due,	6125121
Client:	Energy Fuels Resources, Inc.											Ĭ				X Include EDD:	Laboratory Use Only
Address:	6425 S. Hwy. 191			П					ı	1 1					3	LOCUS UPLOAD EXCEL	Samples Were:
	Blanding, UT 84511			П					ı							Field Filtered For:	1 Shipped ormand delivered
Contact:	Tanner Holliday			П													1 Shipped ormand delivered 2 Ambient or milled 3 Temperature 30 11
Phone #:	(435) 678-2221 Cell #:			П												For Compliance With: NELAP	3 Temperature 3.50 °C
Email:	tholliday@energyfuels.com; KWeinel@energyfue	els.com		П	H											□ RCRA □ CWA	4 Received Broken/Leaking
Project Name:	2nd Quarter Chloroform 2021			Ш	Н											□ SDWA □ ELAP/A2LA	(Improperly Sealed) Y
Project #:				Ш		(2)	300.0)									□ NLLAP □ Non-Compliance	5 Reperly Preserved
PO #:	1			20	Ų	(353.2)	or 30	(0C)								☐ Other:	Y N Checked at bench
Sampler Name:	Tanner Holliday			ntaine	Matri		(4500 0	(8260C)								Known Hazards	Y N 6 Received Within
		Date	Time	င်	Sample	NO2/NO3	CI (4;	VOCs								&	Holding Times
rw4-25_0609202	Sample ID:	6/9/2021	Sampled 726	_	w W	X	Х	X	-	\vdash		-	-	+	+	Sample Comments	
°W4-24_0609202		6/9/2021	735	Н	w	X	Х	X	┝	+	H	-	+	+	+-		
TW4-21_0609202		6/9/2021	717	Н	w	X	X	X	-	+	\vdash	\dashv	\dashv	+	+		COC Tape Was: 1 Present on Outer Package
W4-40_0609202		6/9/2021	903	Н	w	x	X	x		+-	H	-	+	+	╪		Y (N) NA
W4-02_0609202		6/9/2021	822	Н	w	X	х	X	H	+	\vdash			+	+		2 Unbroken on Outer Package Y N N
		6/9/2021	836	5	w	х	х	х	\vdash		Н	\dashv	\neg	1	+		3 Present on Sample Y N NA
rw4-04_0609202	21	6/9/2021	854	5	w	х	х	Х			П						4 Unbroken on Sample
MW-04_0609202	1	6/9/2021	830	5	w	х	х	х									Y N NA
rw4-41_0609202	21	6/9/2021	847	5	w	х	х	х									Discrepancies Between Sample
rw4-11_0609202	21	6/9/2021	813	5	w	Х	х	х									Labels and COC Record
rw4-39_0609202	21	6/9/2021	758	5	w	х	х	х									
/W-26_0609202	1	6/9/2021	806	5	w	х	х	х									
rw4-22_0609202	21	6/9/2021	743	5	w	х	х	х									
Relinquished by:	wave Hallely	Oate: 6/10/2021	Received by: Signature								Date:					Special instructions:	
	ner Holliday	Time: 1100	Print Name:								Time:						
telinquished by: signature		Date:	Received by: Signature								Date:					See the Analytical Scope of Wo analyte list.	ork for Reporting Limits and VOC
rint Name:	T T T T T T T T T T T T T T T T T T T	lime:	Print Name:								Time:						
Relinquished by: Signature		Date:	Received by: Signature								Date:						
rint Name;		Γlme:	Print Name:	14.12		-					Time:						
Relinquished by: Signature	C	Date:	Received by: Signature	A.		=	-		>		Date:	1.	led	21	-2,72		
rint Name:		Пте:	Print Name:	1	in	124	K	w 8'	4		Time:	95					· · · · · · · · · · · · · · · · · · ·

American West **Analytical Laboratories**

463 W. 3600 S. Salt Lake City, UT 84115

CHAIN OF CUSTODY

All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.

	Priorie # (601) 263-6666 1011 Free	# (000) 203-0000						,							,		rage 2 or 2
	Fax # (801) 263-8687 Email a	val@awal-labs,com		Г		QC	Level	l:			Turn	Aroun	d Time):		Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on	Due Date:
	www.awal-labs.c	om		L			3					Standa	rd			the day they are due.	6125/21
Client:	Energy Fuels Resources, Inc.				П							\neg				X Include EDD:	Laboratory Use Only
Address:	6425 S. Hwy. 191				П		l i			1			1			LOCUS UPLOAD EXCEL	Samples Were:
	Blanding, UT 84511				П						1					Field Filtered For:	1 Shipped of hand delivered
Contact:	Tanner Holliday				П												2 Ambient of Chilled O. I
Phone #:	(435) 678-2221 Cell #:				П								-1			For Compliance With: NELAP	3 Temperature 3.8 °C
Email:	tholliday@energyfuels.com; KWeinel@energyf	els.com			П					Н						□ RCRA □ CWA	4 Received Broken/Leaking 4-0 11
Project Name:	2nd Quarter Chloroform 2021				П											□ SDWA □ ELAP / A2LA	(Improperly Sealed) Y
Project #:					Н	5	300.0)									□ NLLAP □ Non-Compliance	5 Property Preserved
PO #:				و	Ш	(353.2)	130	Ω								Other:	Checked at bench
Sampler Name:	Tanner Holliday			lainers	Matrix	03	00 or	(8260C)								Known Horardo	Y N 6 Received Within
		Date	Time	f Con	Sample I	NO2/NO3	C1 (4500	Vocs (1		Known Hazards &	Helding Times
	Sample ID:	Sampled	Sampled	*	_		_		_	\vdash	\vdash	4	+	+		Sample Comments	" "
V4-19_0609202		6/9/2021	650	5	W	х	Х	Х				_	_				
74-37_0609202		6/9/2021	751	5	W	Х	Х	х				_					COC Tape Was:
74-60_0609202	21	6/9/2021	1000	⊢	W	X	Х	Х				_					Present on Outer Package N NA
UP BLANK		6/9/2021	650	3	W			Х				_	_				2 Unbroken on Outer Package
				L	Ц			_		\sqcup			_				
				L	Ц			_	_	Ш		_	_				3 Present on Sample Y N NA
				Ļ	Ц								_				4 Unbroken on Sample Y N (NA)
				L	Ц		_						_				Y N (NA)
	V			L	Ц								_				Discrepancies Between Sample
				L	Ц												Labels and COC Record?
		<u> </u>		L	Ц					Ш							
				L	Ц			_								χ*	2
				L												*	
nquished by: Jay	ener Hollsty		Received by: Signature								Date:					Special Instructions:	
t Name:	Tanner Holliday		Print Name:								Time:						
nquished by: nature		Date:	Received by: Signature								Date:					See the Analytical Scope of Wanalyte list.	ork for Reporting Limits and VOC
t Name:		Time:	Print Name:								Time:						
nquished by: nature		Date:	Received by: Signature								Date:	700					
t Name:		Time:	Print Name:								Time:			V-7-14-			
nquished by: nature		Date:	Received by: Signature	2	_		7		-127		Date;		la	21			
		Time:		1	1.0	- 0	1	K	257	+	Time:	9	55				_

Lab Set ID:	2106354

pH Lot #: _______

Preservation Check Sheet

Sample Set Extension and pH

Analysis	Preservative	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ammonia	pH <2 H ₂ SO ₄					-										-	
COD	pH <2 H ₂ SO ₄																
Cyanide	pH>10 NaOH																
Metals	pH <2 HNO ₃																
NO ₂ /NO ₃	pH <2 H ₂ SO ₄	Yes	Yes	405	Yes	Yes											
O&G	pH <2 HCL												1				
Phenols	pH <2 H ₂ SO ₄																
Sulfide	pH >9 NaOH, ZnAC																
TKN	pH <2 H ₂ SO ₄																
T PO ₄	pH <2 H ₂ SO ₄											,					
Cr VI+	pH >9 (NH ₄) ₂ SO ₄																
		!	-		-		-							-		<u> </u>	
		-	-		-	-	-				ļ			-			
							-	-			ļ	-		-	-		
		-	-	-											-		
										-							

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved.
- ▲ The sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH \leq 2 due to the sample matrix.
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference.

Tab H

Quality Assurance and Data Validation Tables

H-1: Field QA/QC Evaluation

Location	1x Casing Volume	Volume Pumped	2x Casing Volume	Volume Check	Condu	ctivity	RPD	p	Н	RPD	Tempe	erature	RPD	Redox		RPD	Turbidity	RPD	Dissolved Oxygen	RPD
PIEZ-01		•		okay	237		NC		56	NC		.93	NC	360		NC	7.4	NC	63.1	NC
PIEZ-02				okay	919	0.0	NC		63	NC	15	.80	NC	434		NC	3.4	NC	68.5	NC
PIEZ-03A				okay	108		NC	7.	47	NC	16	.00	NC	365		NC	36.0	NC	95.1	NC
TWN-01	24.12	55.00	48.24	okay	926.0	934.0	0.86	7.41	7.47	0.81	15.37	15.34	0.20	491 4	39	0.41	6.0 6.1	1.65	44.7 45.0	0.67
TWN-02	NA	Continuously Pumped well			207	2	NC	7.	32	NC	16	.01	NC	481		NC	Ö	NC	138.0	NC
TWN-03	34.29	46.75	68.58	Pumped Dry	2355	2363	0.34	7.47	7.45	0.27	14.74	14.77	0.20	NM		NC	NM	NC	NM	NC
TWN-04	42.16	110.00	84.32	okay	1052	1051	0.10	7.44	7.47	0.40	14.84	14.82	0.13	445 4	15	0.00	0 0	0.00	71.0 70.0	1.42
TWN-07	17.42	19.25	34.84	Pumped Dry	1945	1940	0.26	7.30	7.35	0.68	14.23	14.30	0.49	NM		NC	NM	NC	NM	NC
TWN-18	55.23	132.00	110.46	okay	2788	2787	0.04	7.09	7.09	0.00	14.58	14.58	0.00	468 4	37	0.21	1.2 1.3	8.00	1.9 1.9	0.00
TWN-20	13.22	13.75	26.44	Pumped Dry	3462	3467	0.14	7.42	7.41	0.13	15.41	15.44	0.19	NM	28 F	NC	NM	NC	NM	NC
TWN-21	19.19	22.00	38.38	Pumped Dry	3770	3779	0.24	7.42	7,40	0.27	15.78	15.80	0.13	NM		NC	NM	NC	NM	NC
TW4-22	NA	Continuously Pumped well			564	10	NC	7.	16	NC	15	.53	NC	419	. TO 16	NC	1.9	NC	77	NC
TW4-24	NA	Continuously Pumped well			961	15	NC	7.	00	NC	15	.25	NC	430		NC	3,2	NC	17.5	NC
TW4-25	NA	Continuously Pumped well			258	30	NC	7.	23	NC	15	.26	NC	415		NC	5.7	NC	35.1	NC

TWN-02, TW4-22, TW4-24, and TW4-25 are continually pumped wells.

TWN-03, TWN-07, TWN-20, TWN-21 were pumped dry and sampled after recovery.

NM = Not Measured. The QAP does not require the measurement of redox potential or turbidity in wells that were purged to dryness.

RPD = Relative Percent Difference

The QAP states that turbidity should be less than 5 Nephelometric Turbidity Units ("NTU") prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU are included for information purposes only.

H-2: Holding Time Evaluation

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time Check
PIEZ-01	Chloride	5/27/2021	6/21/2021	25	28	OK
PIEZ-01	Nitrate + Nitrite as N	5/27/2021	6/21/2021	25	28	OK
PIEZ-02	Chloride	5/27/2021	6/21/2021	25	28	OK
PIEZ-02	Nitrate + Nitrite as N	5/27/2021	6/21/2021	25	28	OK
PIEZ-03A	Chloride	5/27/2021	6/21/2021	25	28	OK
PIEZ-03A	Nitrate + Nitrite as N	5/27/2021	6/21/2021	25	28	OK
TWN-01	Chloride	5/25/2021	6/21/2021	27	28	OK
TWN-01	Nitrate + Nitrite as N	5/25/2021	6/21/2021	27	28	OK
TWN-02	Chloride	5/25/2021	6/21/2021	27	28	OK
TWN-02	Nitrate + Nitrite as N	5/25/2021	6/21/2021	27	28	OK
TWN-03	Chloride	5/27/2021	6/21/2021	25	28	OK
TWN-03	Nitrate + Nitrite as N	5/27/2021	6/21/2021	25	28	OK
TWN-04	Chloride	5/25/2021	6/22/2021	28	28	OK
TWN-04	Nitrate + Nitrite as N	5/25/2021	6/21/2021	27	28	OK
TWN-07	Chloride	5/27/2021	6/21/2021	25	28	OK
TWN-07	Nitrate + Nitrite as N	5/27/2021	6/21/2021	25	28	OK
TWN-18	Chloride	5/25/2021	6/20/2021	26	28	OK
TWN-18	Nitrate + Nitrite as N	5/25/2021	6/21/2021	27	28	OK
TWN-18R	Chloride	5/25/2021	6/20/2021	26	28	OK
TWN-18R	Nitrate + Nitrite as N	5/25/2021	6/21/2021	27	28	OK
TWN-20	Chloride	6/3/2021	6/21/2021	18	28	OK
TWN-20	Nitrate + Nitrite as N	6/3/2021	6/21/2021	18	28	OK
TWN-21	Chloride	6/3/2021	6/21/2021	18	28	OK
TWN-21	Nitrate + Nitrite as N	6/3/2021	6/21/2021	18	28	OK
TWN-60	Chloride	5/25/2021	6/21/2021	27	28	OK
TWN-60	Nitrate + Nitrite as N	5/25/2021	6/21/2021	27	28	OK
TWN-65	Chloride	5/25/2021	6/21/2021	27	28	OK
TWN-65	Nitrate + Nitrite as N	5/25/2021	6/21/2021	27	28	OK
TW4-22	Chloride	6/9/2021	6/24/2021	15	28	OK
TW4-22	Nitrate/Nitrite (as N)	6/9/2021	6/22/2021	13	28	OK
TW4-24	Chloride	6/9/2021	6/23/2021	14	28	OK
TW4-24	Nitrate/Nitrite (as N)	6/9/2021	6/22/2021	13	28	OK
TW4-25	Chloride	6/9/2021	6/23/2021	14	28	OK
TW4-25	Nitrate/Nitrite (as N)	6/9/2021	6/22/2021	13	28	OK
TW4-60	Chloride	6/9/2021	6/24/2021	15	28	OK
TW4-60	Nitrate/Nitrite (as N)	6/9/2021	6/22/2021	13	28	OK

H-3: Analytical Method Check

Parameter	Method	Method Used by Lab	
Nitrate	E353.1 or E353.2	E353.2	
	A4500-Cl B or A4500-Cl E		
Chloride	or E300.0	E300.0	

Both Nitrate and Chloride were analyzed with the correct analytical method.

H-4 Reporting Limit Check

Location	Analyte	Lab Reporting Limit	Units	Qualifier	Dilution Factor	Required Reporting Limit	RL Check
PIEZ-01	Chloride	1	mg/L		10	1	OK
PIEZ-01	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
PIEZ-02	Chloride	1	mg/L		5	1	OK
PIEZ-02	Nitrate + Nitrite as N	0.1	mg/L	U	10	0.1	OK
PIEZ-03A	Chloride	11	mg/L		10	1	OK
PIEZ-03A	Nitrate + Nitrite as N	0.2	mg/L		20	0.1	OK
TWN-01	Chloride	1	mg/L		10	1	OK
TWN-01	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-02	Chloride	1	mg/L		10	1	OK
TWN-02	Nitrate + Nitrite as N	0.5	mg/L		50	0.1	OK
TWN-03	Chloride	2	mg/L		20	1	OK
TWN-03	Nitrate + Nitrite as N	0.2	mg/L		20	0.1	OK
TWN-04	Chloride	1	mg/L		10	1	OK
TWN-04	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-07	Chloride	1	mg/L		10	1	OK
TWN-07	Nitrate + Nitrite as N	0.2	mg/L		20	0.1	OK
TWN-18	Chloride	1	mg/L		10	1	OK
TWN-18	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-18R	Chloride	1	mg/L	U	1	1	OK
TWN-18R	Nitrate + Nitrite as N	0.1	mg/L	U	10	0.1	OK
TWN-20	Chloride	2	mg/L		20	1	OK
TWN-20	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-21	Chloride	2	mg/L		20	1	OK
TWN-21	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TWN-60	Chloride	1	mg/L	U	1	1	OK
TWN-60	Nitrate + Nitrite as N	0.1	mg/L	U	10	0.1	OK
TW4-22	Chloride	10	mg/L		100	1	OK
TW4-22	Nitrate + Nitrite as N	0.5	mg/L		50	0.1	OK
TW4-24	Chloride	10	mg/L		100	1	OK
TW4-24	Nitrate + Nitrite as N	0.5	mg/L		50	0.1	OK
TW4-25	Chloride	5	mg/L		50	1	OK
TW4-25	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK
TW4-60	Chloride	1	mg/L	U	1	1	OK
TW4-60	Nitrate + Nitrite as N	0.1	mg/L	U	10	0.1	OK
TWN-65	Chloride	1	mg/L		10	1	OK
TWN-65	Nitrate + Nitrite as N	0.1	mg/L		10	0.1	OK

H-5 QA/QC Evaluation for Sample Duplicates

Constituent	TWN-18	TWN-65	%RPD
Chloride	44.9	44.1	1.80
Nitrogen	0.220	0.247	11.56

H-6 QC Control Limits for Analysis and Blanks

Method Blank Detections

All Method Blanks for the quarter were non-detect.

Matrix Spike % Recovery Comparison

						REC	
Lab Report	Lab Sample ID	Well	Analyte	MS %REC	MSD %REC	Range	RPD
2106232	2106232-014	Piez-03A	Nitrate	89.6	76.1	90-110	8.75
2106354	2106354-001	TW4-25	Nitrate	128	128	90-110	0.12
2106354	2106354-005	TW4-02	Nitrate*	NC	NC	90-110	NC

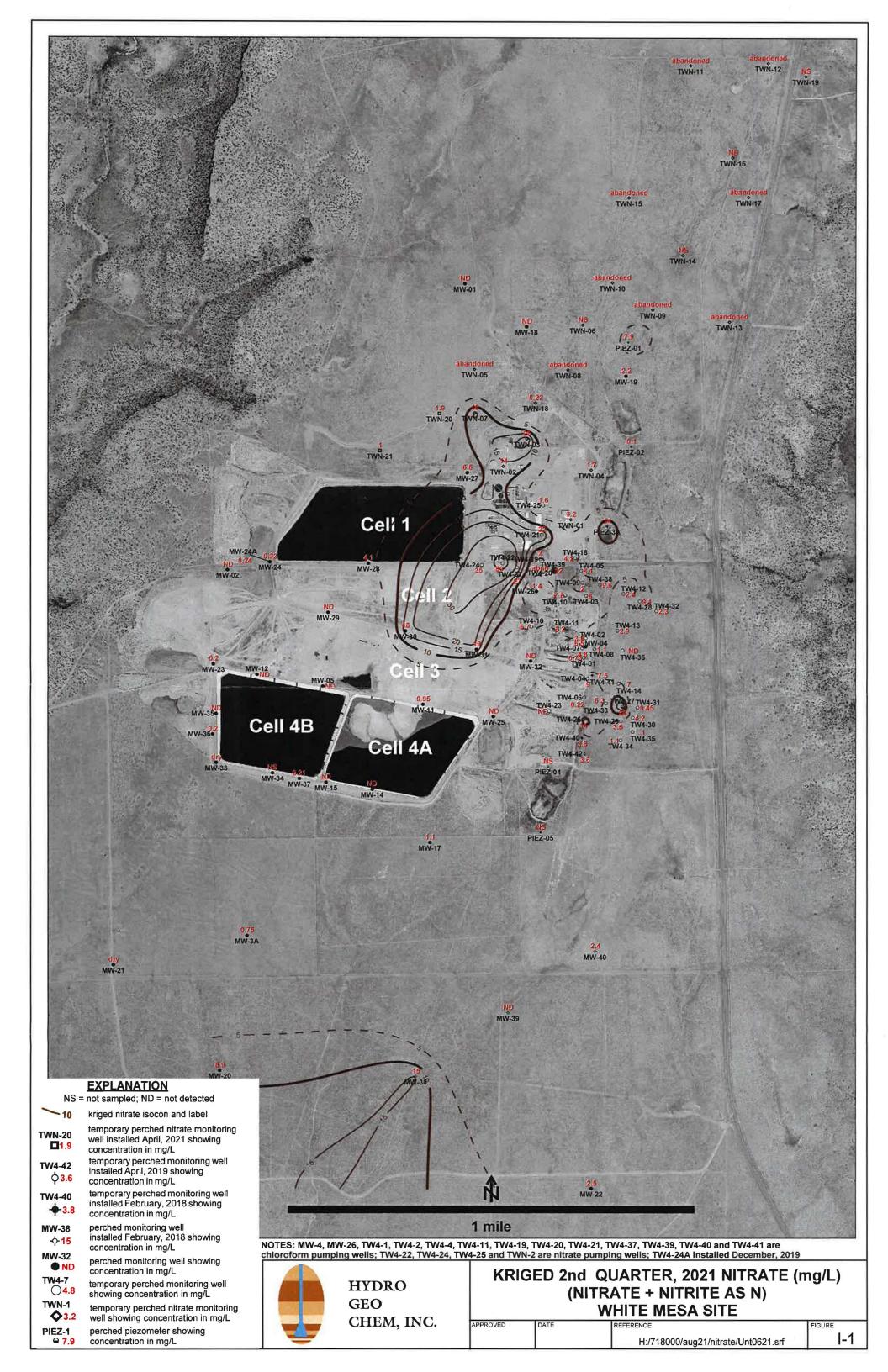
^{* -} Recovery was not calculated because the analyte of the sample was greater than 4 times the spike amount

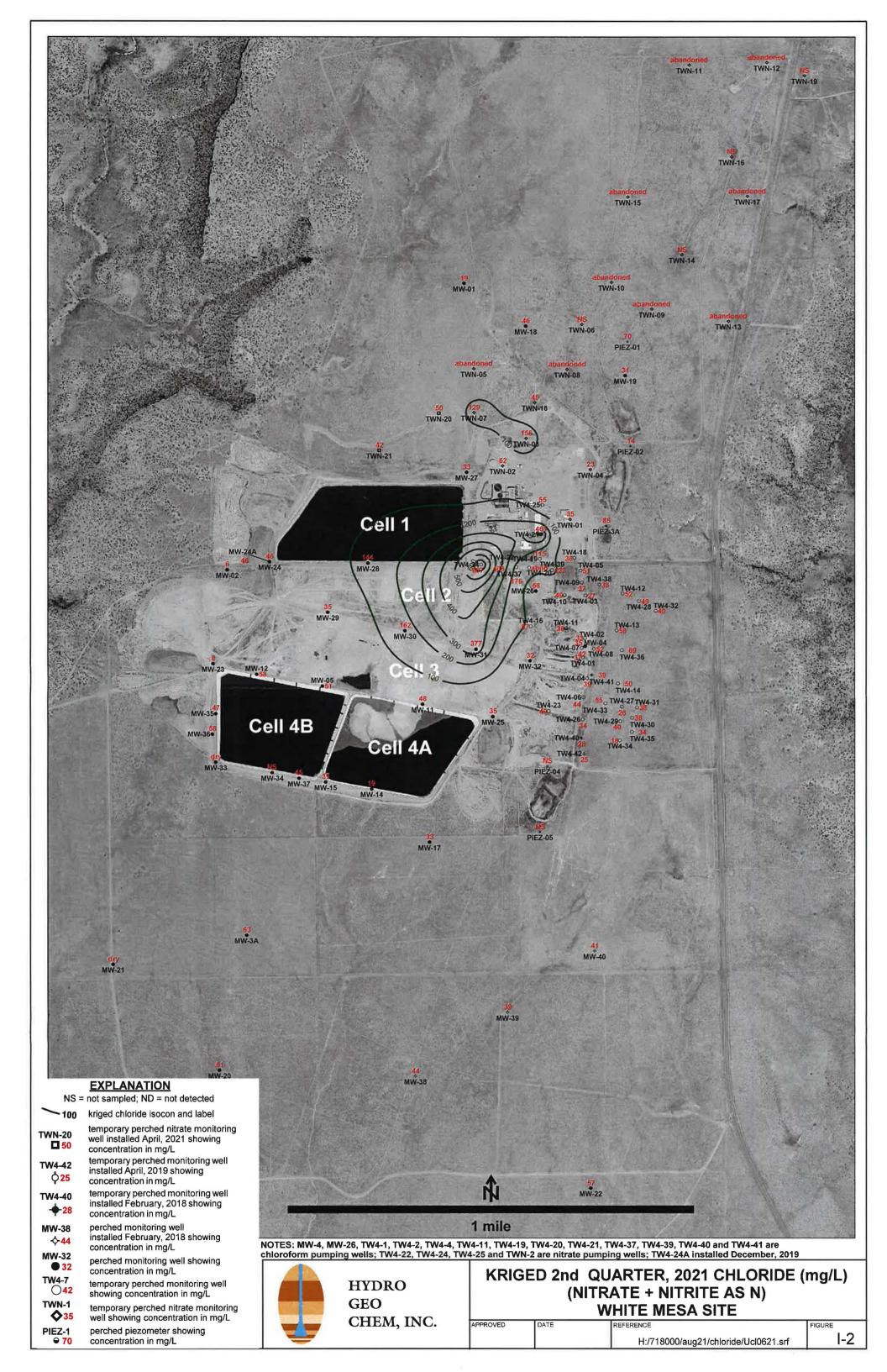
NC - Not calculated

Laboratory Control Sample

All Laboratory Control Samples were within acceptance limits for the quarter.

H-7 Receipt Temperature Evaluation


Sample Batch	Wells in Batch	Temperature
2106232	PIEZ-01, PIEZ-02, PIEZ-03A, TWN-1, TWN-2, TWN-3, TWN-4, TWN-7, TWN-18, TWN-18R, TWN-20, TWN-21, TWN-60, TWN-65	1.9 °C
2106354	TW4-22, TW4-24, TW4-25, TW4-60	0.1 °C


H-8 Rinsate Evaluation

All rinsate and DI blank samples were non-detect for the quarter.

Tab I

Kriged Current Quarter Isoconcentration Maps

Tab J Analyte Concentrations over Time

Piezometer 1

Dete	Nituata (mag/I)	
Date	Nitrate (mg/l)	Chloride (mg/l) NA
2/19/2009	6.8	
7/14/2009	6.8	60
9/22/2009	7.3	78
10/27/2009	7.4	61
6/2/2010	7.2	52
7/19/2010	6.8	52
12/10/2010	6.5	60
1/31/2011	7	60
4/25/2011	6.8	58
7/25/2011	7	53
10/19/2011	6.6	55
1/11/2012	7.1	78
4/20/2012	6.6	58
7/27/2012	7.2	56
10/17/2012	7.66	55
2/18/2013	8.11	56.7
4/24/2013	8.88	53.3
8/28/2013	7.83	55.1
10/16/2013	6.68	54.1
1/13/2014	6.79	56.2
5/7/2014	7.57	52.1
8/6/2014	5.1	55
10/8/2014	5.75	57.6
2/18/2015	6.41	55.9
5/12/2015	5.95	57.5
8/26/2015	4.96	64.2
10/14/2015	6.17	54.4
2/23/2016	8.31	56.5
5/17/2016	6.33	59.1
7/19/2016	6.78	53.9
10/11/2016	6.42	58.1
2/15/2017	6.75	54.5
6/1/2017	6.60	54.7
7/20/2017	6.80	58.0
10/4/2017	6.21	54.4
1/17/2018	6.35	55.3
5/9/2018	6.56	58.0
8/8/2018	6.66	63.5
11/20/2018	6.70	55.5
2/19/2019	6.72	56.8
5/30/2019	6.75	59.4
8/14/2019	6.81	61.1
10/16/2019	7.21	59.3
1/30/2020	7.12	68.9
_,,		

Piezometer 1

Date	Nitrate (mg/l)	Chloride (mg/l)
5/20/2020	6.95	67.7
7/15/2020	7.36	63.6
11/13/2020	7.51	63.9
2/18/2021	7.34	57.5
5/27/2021	7.89	69.9

Piezometer 2

Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2009	0.500	NA
7/14/2009	0.500	7.0
9/22/2009	0.500	17.0
10/27/2009	0.600	7.0
6/2/2010	0.600	8.0
7/19/2010	0.600	8.0
12/10/2010	0.200	6.0
1/31/2011	0.300	9.0
4/25/2011	0.300	8.0
7/25/2011	0.100	9.0
10/19/2011	0.100	8.0
1/11/2012	0.100	9.0
4/20/2012	0.200	8.0
7/27/2012	0.200	9.0
10/17/2012	0.192	9.5
2/19/2013	0.218	9.7
4/24/2013	0.172	10.3
8/28/2013	0.198	9.7
10/16/2013	0.364	9.2
1/13/2014	0.169	11.4
5/7/2014	0.736	11.4
8/6/2014	0.800	12.0
10/8/2014	0.755	12.2
2/18/2015	0.749	12.6
5/12/2015	0.646	13.1
8/26/2015	0.662	15.5
10/14/2015	0.692	13.3
2/23/2016	0.615	13.4
5/17/2016	0.665	14.0
7/19/2016	0.669	12.4
10/11/2016	0.732	13.4
2/15/2017	0.696	12.4
6/1/2017	0.345	13.2
7/20/2017	0.555	13.4
10/4/2017	0.684	12.7
1/17/2018	0.716	13.0
5/9/2018	0.776	14.0
8/8/2018	0.818	15.1
11/20/2018	0.648	12.3
2/19/2019	0.599	12.9
5/30/2019	0.702	12.6
8/14/2019	0.606	13.2
10/16/2019	0.573	12.6
1/30/2020	0.740	14.2

Piezometer 2

Date	Nitrate (mg/l)	Chloride (mg/l)
5/20/2020	0.679	14.4
7/15/2020	0.793	12.7
11/13/2020	0.544	12.9
2/18/2021	0.401	15.7
5/27/2021	0.100	13.9

Piezometer 3A

Date	Nitrate (mg/l)	Chloride (mg/l)
5/17/2016	8.23	109
7/19/2016	8.83	93.8
10/11/2016	8.44	100
2/15/2017	10.00	111
6/1/2017	10.10	124
7/20/2017	9.31	105
10/4/2017	9.65	107
1/17/2018	8.61	94.3
5/9/2018	8.98	100
8/8/2018	12.1	122
11/20/2018	11.8	105
2/19/2019	11.8	102
5/30/2019	11.8	104
8/14/2019	10.7	96.2
10/16/2019	8.97	83.0
1/30/2020	10.5	99.5
5/20/2020	12.4	88.3
7/15/2020	12.8	82.7
11/13/2020	13.0	72.8
2/18/2021	11.10	85.9
5/27/2021	14.40	85.2

TWN-1		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	0.7	19
7/21/2009	0.4	17
9/21/2009	0.4	19
10/28/2009	0.5	18
3/17/2010	0.5	17
5/26/2010	0.6	20
9/27/2010	0.6	19
12/7/2010	0.6	14
1/26/2011	0.5	17
4/20/2011	0.5	19
7/26/2011	0.5	14
10/17/2011	0.5	10
1/9/2012	0.6	15
4/18/2012	0.6	17
7/24/2012	0.6	17 17 -
10/15/2012 2/18/2013	0.432 0.681	17.5 17.6
4/23/2013	0.84	17.4
8/27/2013	1.24	24.1
10/16/2013	1.61	26.8
1/14/2014	1.47	29.2
5/6/2014	1.63	31.1
8/5/2014	1.7	28
10/8/2014	1.46	27.6
2/18/2015	1.37	27.8
5/13/2015	0.65	29.2
8/25/2015	0.324	33.2
10/13/2015	1.35	27.7
2/23/2016	1.51	30.3
5/17/2016	1.73	32.1
7/20/2016	1.76	29.6
10/6/2016	1.98	33.0
2/15/2017	2.06	31.2
6/1/2017	1.89	32.7
7/19/2017	2.07	31.2
10/4/2017	1.95	32.0
1/18/2018	1.86	30.4
5/8/2018	2.06	28.4
8/8/2018	1.97	34.2
11/20/2018	1.98	28.9
2/20/2019	2.10	31.4
5/29/2019	1.93	32.6
8/14/2019	2.15	30.3
10/16/2019	2.35	32.0
1/29/2020	2.24	33.8

TWN-1			
Date	Nitrate (mg/l)	Chloride (mg/l)	
5/20/2020	2.24	33.0	
7/15/2020	2.36	30.8	
11/12/2020	1.89	29.2	
2/17/2021	2.53	34.1	
5/25/2021	3.18	34.7	

Nitrate (mg/l)	Chloride (mg/l)
25.4	29
25	25
22.6	17
20.8	55
62.1	85
69	97
69	104
48	93
43	93
40	85
33	74
33	76
31	86
48	103
54	93
22.1	79
57.3	80.5
57.7	82.1
80	75.9
111	70.4
42.6	72.4
	84.9
	80
	81
	84.8
	82.6
	87.8
	74.9
	73.9
	74.5
	68.8
	69.8
	65.8
	61.5
	64.2
	60.5
	57.1
	62.3
	61.5
	56.0
	50.7
	102
	50.7
	53.0
16.5	66.1
	25.4 25 22.6 20.8 62.1 69 69 48 43 40 33 31 48 54 22.1 57.3 57.7 80 111

TWN-2		
Date	Nitrate (mg/l)	Chloride (mg/l)
5/20/2020	16.1	59.6
7/15/2020	17.2	55.6
11/12/2020	12.00	53.5
2/18/2021	15.4	61.8
5/25/2021	13.8	61.5

TWN-3		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	23.6	96
7/21/2009	25.3	96
9/21/2009	27.1	99
11/2/2009	29	106
3/25/2010	25.3	111
6/3/2010	26	118
7/15/2010	27	106
12/10/2010	24	117
2/1/2011	24	138
4/28/2011	26	128
7/29/2011	25	134
10/20/2011	25	129
1/12/2012	25	143
4/20/2012	24	152
7/31/2012	27	158
10/17/2012		149
2/19/2013	22.2	157
4/24/2013	27.2	158
8/28/2013	20.9	171
10/17/2013	23.5	163
1/15/2014	19.6	160
5/7/2014	23.6	168
8/6/2014	19.5	174
10/9/2014	19.1	153
2/19/2015	19.4	164
5/14/2015	17.2	141
8/26/2015 10/14/2015	16.2 16.3	156 129
2/24/2016	16.8	128
5/18/2016	13.5	116
7/19/2016	16.8	110
10/7/2016	15.8	113
2/16/2017	17.4	113
6/2/2017	15.9	108
7/20/2017	15.9	106
10/5/2017	15.6	111
1/19/2018	14.4	107
5/9/2018		115
8/9/2018	19.4	149
11/21/2018	20.1	123
2/21/2019		140
5/30/2019	18.7	137
8/15/2019	19.8	133
10/17/2019	19.6	126
1/30/2020		156

TWN-3		
Date	Nitrate (mg/l)	Chloride (mg/l)
5/21/2020	24.0	136
7/16/2020	22.2	130
11/13/2020	18.00	137
2/18/2021	23.8	145
5/27/2021	25.0	156

TWN-4		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	1.00	13.0
7/21/2009	0.05	12.0
9/21/2009	0.40	13.0
10/28/2009	0.40	11.0
3/16/2010	0.90	22.0
5/27/2010	1.00	22.0
9/27/2010	0.90	19.0
12/8/2010	1.00	21.0
1/25/2011	0.90	21.0
4/20/2011	0.90	21.0
7/26/2011	1.10	35.0
10/18/2011	0.90	20.0
1/9/2012	0.90	20.0
4/18/2012	1.10	24.0
7/25/2012	1.40	25.0
10/15/2012		26.4
2/18/2013	1.51	25.3
4/23/2013	1.63	24.4
8/27/2013	1.58	27.2
10/16/2013	1.69	29.4
1/14/2014	1.41	28.4
5/6/2014	1.55	29.6
8/5/2014	2.00	28.0
10/8/2014	1.44	30.7
2/18/2015	1.48	31.5
5/13/2015	0.73	31.9
8/25/2015	0.97	35.2
10/13/2015	1.58	28.4
2/23/2016 5/17/2016	2.02	30.7 31.7
7/20/2016	2.97 3.14	28.0
10/6/2016	3.09	31.3
2/15/2017	2.63	31.2
6/1/2017	2.37	28.6
7/19/2017	2.35	28.0
10/4/2017	2.27	27.4
1/18/2018	1.77	26.3
5/8/2018	1.86	27.7
8/8/2018	1.54	28.0
11/20/2018	1.48	22.7
2/20/2019	1.53	25.3
5/29/2019	1.51	26.5
8/14/2019	1.81	23.7
10/16/2019	2.15	25.4
1/29/2020	1.89	27.2
_,,		

TWN-4		
Date	Nitrate (mg/l)	Chloride (mg/l)
5/20/2020	1.75	25.1
7/15/2020	1.75	23.1
11/12/2020	1.18	22.8
2/17/2021	1.64	24.2
5/25/2021	1.70	23.2

TWN-7		
Date	Nitrate (mg/l)	Chloride (mg/l)
8/25/2009	ND	11.00
9/21/2009	ND	7.00
11/10/2009	0.10	7.00
3/17/2010	0.800	6.00
5/28/2010	1.200	6.00
7/14/2010	1.600	7.00
12/10/2010	1.000	4.00
1/27/2011	1.300	6.00
4/21/2011	1.700	6.00
7/29/2011	0.700	5.00
10/19/2011		6.00
1/11/2012	2.300	5.00
4/20/2012	1.200	6.00
7/26/2012	0.900	6.00
10/16/2012	0.641	5.67
2/19/2013	0.591	5.68
4/24/2013	1.160	5.88
8/28/2013	0.835	6.96
10/16/2013	0.986	5.70
1/15/2014	0.882	5.75
5/7/2014	0.564	5.26
8/6/2014	0.900	6.00
10/9/2014	0.968	5.93
2/19/2015	1.040	5.58
5/14/2015	0.779	6.18
8/26/2015	0.348	6.12
10/14/2015	0.672	5.84
2/24/2016	0.240	6.06
5/18/2016	0.732	6.26 5.97
7/21/2016 10/7/2016	0.810 0.698	6.17
2/16/2017	1.63	14.00
6/2/2017	3.74	29.70
7/20/2017	2.70	29.00
10/5/2017	3.58	41.40
1/19/2018	5.82	69.40
5/9/2018	10.2	94.70
8/9/2018	10.6	105
11/21/2018	11.5	104
2/21/2019	12.9	107
5/30/2019	13.5	122
8/15/2019	12.9	120
10/17/2019	14.2	119
1/30/2020	14.2	128
5/21/2020	14.6	126
-,,		

TWN-7			
Date	Nitrate (mg/l)	Chloride (mg/l)	
7/16/2020	15.2	116	
11/13/2020	11.8	121	
2/18/2021	16.0	129	
5/27/2021	16.4	129	

TWN-18

I AAIA-TO		
Date	Nitrate (mg/l)	Chloride (mg/l)
11/2/2009	1.300	57.0
3/17/2010	1.600	42.0
6/1/2010	1.800	63.0
9/27/2010	1.800	64.0
12/9/2010	1.600	59.0
1/27/2011	1.400	61.0
4/26/2011	1.800	67.0
7/28/2011	1.800	65.0
10/18/2011	1.900	60.0
1/10/2012	1.900	64.0
4/19/2012	2.100	64.0
7/26/2012	2.300	67.0
10/16/2012	1.950	67.5
2/18/2013	2.270	68.7
4/23/2013	2.320	64.3
8/27/2013	2.040	70.4
10/16/2013	2.150	67.3
1/14/2014	2.330	68.4
5/6/2014	2.180	76.5
8/5/2014	1.800	70.0
10/8/2014	1.470	74.8
2/18/2015	1.000	73.3
5/13/2015	1.350	76.6
8/25/2015	0.350	81.3
10/13/2015	0.668	69.0
2/23/2016	0.648	67.6
5/17/2016	0.497	69.9
7/20/2016	0.100	52.7
10/6/2016	0.501	67.4
2/15/2017	0.470	62.1
6/1/2017	0.392	63.9
7/19/2017	0.419	59.0
10/4/2017	0.256	56.6
1/18/2018	0.332	53.1
5/8/2018	0.283	57.8
8/8/2018	0.348	59.7
11/20/2018	0.160	48.1
2/20/2019	0.155	46.4
5/29/2019	0.129	50.0
8/14/2019	0.181	46.9
10/16/2019	0.162	47.1
1/29/2020	0.224	51.9
5/20/2020	0.236	47.4
7/15/2020	0.232	44.0
11/12/2020	0.208	42.3
,,		

TWN-18

Date Nitrate (mg/l) Chloride (mg/l) 2/17/2021 0.228 46.2 5/25/2021 0.220 44.9

TWN-20

Date Nitrate (mg/l) Chloride (mg/l) 6/3/2021 1.88 50.0

TWN-21

Date Nitrate (mg/l) Chloride (mg/l) 6/3/2021 1.03 41.9

TW4-19	
TW4-19	

TW4-19				
Date	Nitrate (mg/l)	Date	Chloride (mg/l)	
7/22/2002	42.80	12/7/2005	81	
9/12/2002	47.60	3/9/2006	86	
3/28/2003	61.40	7/20/2006	123	
6/23/2003	11.40	11/9/2006	134	
7/15/2003	6.80	2/28/2007	133	
8/15/2003	4.00	8/15/2007	129	
9/12/2003	5.70	10/10/2007	132	
9/25/2003	9.20	3/26/2008	131	
10/29/2003	7.70	6/25/2008	128	
11/9/2003	4.80	9/10/2008	113	
8/16/2004	9.91	10/15/2008	124	
9/17/2004	4.50	3/4/2009	127	
3/16/2005	5.30	6/23/2009	132	
6/7/2005	5.70	9/14/2009	43	
8/31/2005	4.60	12/14/2009	124	
12/1/2005	0.10	2/17/2010	144	
3/9/2006	4.00	6/9/2010	132	
6/14/2006	5.20	8/16/2010	142	
7/20/2006	4.30	10/11/2010	146	
11/9/2006	4.60	2/17/2011	135	
2/28/2007	4.00	6/7/2011	148	
8/15/2007	4.10	8/17/2011	148	
10/10/2007	4.00	11/17/2011	148	
3/26/2008	2.20	1/23/2012	138	
6/25/2008	2.81	6/6/2012	149	
9/10/2008	36.20	9/5/2012	149	
10/15/2008	47.80	10/3/2012	150	
3/4/2009	3.20	2/11/2013	164	
6/23/2009	2.40	6/5/2013	148	
9/14/2009	0.10	9/3/2013	179	
12/14/2009	26.70	10/29/2013	206	
2/17/2010	2.00	1/27/2014	134	
6/9/2010	4.40	5/19/2014	152	
8/16/2010	5.90	8/11/2014	140	
10/11/2010	2.70	10/21/2014	130	
2/17/2011	17.00	3/9/2015	238	
6/7/2011	12.00	6/8/2015	180	
8/17/2011	3.00	8/31/2015	326	
11/17/2011	5.00	10/19/2015	252	
1/23/2012	0.60	3/9/2016	276	
6/6/2012	2.40	5/23/2016	201	
9/5/2012	2.50	7/25/2016	214	
10/3/2012	4.10	10/13/2016	200	
2/11/2013	7.99	3/8/2017	461	
6/5/2013	2.95	6/13/2017	135	

TW4-19			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
9/3/2013	17.60	7/26/2017	218
10/29/2013	4.70	10/11/2017	139
1/27/2014	1.62	3/12/2018	193
5/19/2014	1.34	6/8/2018	138
8/11/2014	1.60	8/22/2018	166
10/21/2014	4.72	11/28/2018	140
3/9/2015	8.56	3/8/2019	197
6/8/2015	0.92	6/5/2019	160
8/31/2015	11.60	9/4/2019	153
10/19/2015	10.60	12/10/2019	147
3/9/2016	15.70	2/19/2020	205
5/23/2016	1.27	5/27/2020	147
7/25/2016	10.50	9/4/2020	188
10/13/2016	10.00	10/28/2020	104
3/8/2017	11.10	2/23/2021	167
6/13/2017	0.243	6/9/2021	115
7/26/2017	1.12		
10/11/2017	0.377		
3/12/2018	8.61		
6/8/2018	0.494		
8/22/2018	2.55		
11/28/2018	0.233		
3/8/2019	6.58		
6/5/2019	8.96		
9/4/2019	0.332		
12/10/2019	0.535		
2/19/2020	10.10		
5/27/2020	1.14		
9/4/2020	11.60		
10/28/2020	1.10		
2/23/2021	6.61		
6/9/2021	4.04		

The sampling program for TW4-19 was updated in the fourth quarter of 2005 to include analysis for chloride as well as nitrate. This change accounts for the different number of data points represented above.

п	T\/	1	1	2	•
	v	v	4	-/	

TW4-21			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
5/25/2005	14.6	12/7/2005	353
8/31/2005	10.1	3/9/2006	347
11/30/2005	9.6	7/20/2006	357
3/9/2006	8.5	11/8/2006	296
6/14/2006	10.2	2/28/2007	306
7/20/2006	8.9	6/27/2007	327
11/8/2006	8.7	8/15/2007	300
2/28/2007	8.7	10/10/2007	288
6/27/2007	8.6	3/26/2008	331
8/15/2007	8.6	6/25/2008	271
10/10/2007	8.3	9/10/2008	244
3/26/2008	14.3	10/15/2008	284
6/25/2008	8.8	3/11/2009	279
9/10/2008	7.6	6/24/2009	291
10/15/2008	8.0	9/15/2009	281
3/11/2009	8.3	12/22/2009	256
6/24/2009	8.1	2/25/2010	228
9/15/2009	9.2	6/10/2010	266
12/22/2009	8.4	8/12/2010	278
2/25/2010	8.4	10/13/2010	210
6/10/2010	12.0	2/22/2011	303
8/12/2010	14.0	6/1/2011	297
10/13/2010	7.0	8/17/2011	287
2/22/2011	9.0	11/16/2011	276
6/1/2011	13.0	1/19/2012	228
8/17/2011	14.0	6/13/2012	285
11/16/2011	13.0	9/13/2012	142
1/19/2012	15.0	10/4/2012	270
6/13/2012	11.0	2/13/2013	221
9/13/2012	13.0	6/18/2013	243
10/4/2012	14.0	9/12/2013	207
2/13/2013	11.8	11/13/2013	206
6/18/2013	13.8	2/5/2014	200
9/12/2013	10.3	5/22/2014	243
11/13/2013	9.0	8/27/2014	230
2/5/2014 5/22/2014	11.4 11.5	10/29/2014 3/12/2015	252 255
8/27/2014	11.5 7.1	6/8/2015	494
10/29/2014	10.0	8/31/2015	499
10/23/2014	10.0	0/31/2013	433

TW4-21			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
3/12/2015	10.9	10/19/2015	413
6/8/2015	13.1	3/9/2016	452
8/31/2015	14.7	5/23/2016	425
10/19/2015	14.3	7/25/2016	457
3/9/2016	14.6	10/12/2016	439
5/23/2016	13.1	3/8/2017	478
7/25/2016	16.5	6/13/2017	309
10/12/2016	13.5	7/26/2017	447
3/8/2017	17.7	10/11/2017	378
6/13/2017	9.5	3/12/2018	447
7/26/2017	18.2	6/8/2018	387
10/11/2017	16.9	8/22/2018	182
3/12/2018	15.8	10/22/2018	392
6/8/2018	14.1	3/8/2019	180
8/22/2018	0.236	6/5/2019	456
10/22/2018	15.2	9/4/2019	478

8.99

17.5

14.7

5.73

8.93

15.4

12.6

16.3

15.2

21.5

12/10/2019

2/19/2020

5/27/2020

9/4/2020

10/28/2020

2/23/2021

6/9/2021

339

446

353

382

411

454

461

3/8/2019

6/5/2019

9/4/2019

12/10/2019

2/19/2020

5/27/2020

9/4/2020

10/28/2020

2/23/2021

6/9/2021

TW4-22			
Date	Nitrate (mg/l)	Chloride (mg/l)	
2/28/2007	20.9	347	
6/27/2007	19.3	273	
8/15/2007	19.3	259	
10/10/2007	18.8	238	
3/26/2008	39.1	519	
6/25/2008	41.9	271	
9/10/2008	38.7	524	
10/15/2008	36.3	539	
3/11/2009	20.7	177	100
6/24/2009	20.6	177	
9/15/2009	40.3	391	
12/29/2009	17.8	175	
3/3/2010	36.6	427	
6/15/2010	19	134	
8/12/2010	18	127	
8/24/2010	15	130	
10/13/2010	16	134	
2/23/2011	18	114	
6/1/2011	17	138	
8/17/2011	15	120	
11/16/2011	19	174	
1/19/2012	14	36	
6/13/2012	12.8	35	
9/12/2012	7	121	
10/4/2012	14	130	
2/11/2013	58	635	
6/5/2013	50.2	586	
9/3/2013	29.7	487	
10/29/2013	45.2	501	
1/27/2014	54.6	598	
5/19/2014	47.2	614	
8/11/2014	41.5	540	
10/21/2014	54.9	596	
3/9/2015	69.2	675	
6/8/2015	47.1	390	
8/31/2015	64.7	557	
10/19/2015	56.1	567	
3/9/2016	31.1	583	
5/23/2016	58.4	598	
7/25/2016	61.3	619	
10/12/2016	61.5	588	
3/8/2017	69.8	566	
6/13/2017	70.8	572	
7/26/2017	66.1	391	
10/11/2017	80.1	600	
3/12/2018	62.3	607	
6/8/2018	72.5	580	
and an a second of the	to According to		

TW4-22		
Date	Nitrate (mg/l)	Chloride (mg/l)
8/22/2018	55.4	613
11/28/2018	75.7	567
3/8/2019	71.9	528
6/5/2019	83.9	662
9/4/2019	72.5	588
12/10/2019	59.9	608
2/19/2020	57.7	606
5/27/2020	60.5	578
9/4/2020	64.8	514
10/28/2020	64.9	523
2/23/2021	69.6	618
6/9/2021	89.3	408

ς.

TW4-24		
Date	Nitrate (mg/l)	Chloride (mg/l)
6/27/2007	26.1	770
8/15/2007	29	791
10/10/2007	24.7	692
3/26/2008	24.4	740
6/25/2008	45.3	834
9/10/2008	38.4	1180
10/15/2008	44.6	1130
3/4/2009	30.5	1010
6/24/2009	30.4	759
9/15/2009	30.7	618
12/17/2009	28.3	1080
2/25/2010	33.1	896
6/9/2010	30	639
8/11/2010	32	556
8/24/2010	31	587
	31	522
10/6/2010		1100
2/17/2011	31	1110
5/26/2011	35	
8/17/2011	34	967
11/16/2011	35	608
1/18/2012	37	373
6/6/2012	37	355
8/30/2012	37	489
10/3/2012	38	405
2/11/2013	35.9	1260
6/5/2013	23.7	916
9/3/2013	32.6	998
10/29/2013	34.6	1030
1/27/2014	31.6	809
5/19/2014	35	1020
8/11/2014	31.5	1150
10/21/2014	35.7	1050
3/9/2015	34.6	944
6/8/2015	31.8	1290
8/31/2015	25.3	788
10/19/2015	29.6	909
3/9/2016	29.1	989
5/23/2016	24.2	771
7/25/2016	34.4	1,180
10/12/2016	31.9	1,010
3/8/2017	41.3	1,090
6/13/2017	39.9	1,080
7/26/2017	40.0	1,230
10/11/2017	31.7	895
3/12/2018	44.9	1,320
6/14/2018	33.6	792
8/22/2018	33.8	996
11/28/2018	38.4	1,100
3/8/2019	39.3	1,040
6/5/2019	33.2	1,020
9/4/2019	36.4	1,130
12/10/2019	33.8	1,090

TW4-24		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2020	37.1	1,010
5/27/2020	41.7	1,060
9/4/2020	39.1	1,100
10/28/2020	35.9	1,050
2/23/2021	41.9	1,170
6/9/2021	48.0	938

TW4-25			
Date	Nitrate (mg/l)	Chloride (mg/l)	
6/27/2007	17.1	395	
8/15/2007	16.7	382	
10/10/2007	17	356	
3/26/2008	18.7	374	
6/25/2008	22.1	344	
9/10/2008	18.8	333	
10/15/2008	21.3	366	
3/4/2009	15.3	332	
6/24/2009	15.3	328	
9/15/2009	3.3	328	
12/16/2009	14.2	371	
2/23/2010	14.4	296	
6/8/2010	16	306	
8/10/2010	14	250	
10/5/2010	15 15	312	
2/16/2011 5/25/2011	15 16	315 321	
8/16/2011	16	276	
11/15/2011	16	294	
1/18/2011	16	304	
5/31/2012	16	287	
9/11/2012	17	334	
10/3/2012	17	338	
2/11/2013	9.04	190	
6/5/2013	5.24	136	
9/3/2013	5.69	119	
10/29/2013	6.10	88.6	
1/27/2014	2.16	85.7	
5/19/2014	1.21	51.1	
8/11/2014	1.6	67	
10/21/2014	1.03	58.1	
3/9/2015	14.4	310	
6/8/2015	1.14	58.3	
8/31/2015	1.63	69.2	
10/21/2015	1.78	93.7	
3/9/2016	0.837	62.7	
5/23/2016	0.959	75.5	
7/25/2016	1.78	74.1	
10/12/2016	1.24	59.8	
3/8/2017	17.0	285	
6/13/2017	0.976	69.8	
7/26/2017	1.23	70.1	
10/11/2017	1.29	68.0	
3/12/2018	2.23	70.5	
6/14/2018	1.14	60.3	

TW4-25		
Date	Nitrate (mg/l)	Chloride (mg/l)
8/22/2018	0.810	69.1
11/28/2018	0.634	59.7
3/8/2019	0.639	65.0
6/5/2019	0.821	59.0
9/4/2019	0.548	58.1
12/10/2019	0.841	73.1
2/19/2020	0.607	86.0
5/27/2020	0.851	76.8
9/4/2020	0.994	67.3
10/28/2020	1.64	61.3
2/23/2021	3.43	100
6/9/2021	1.57	55.1

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/22/2005	12.4	6/22/2005	125
9/22/2005	12.8	9/22/2005	125
12/14/2005	13.6	12/14/2005	128
3/22/2006	13.8	3/22/2006	125
6/21/2006	14.5	6/21/2006	124
9/13/2006	14.1	9/13/2006	118
10/25/2006	14.6	10/25/2006	124
3/15/2007	14.4	3/15/2007	125
8/22/2007	14.6	8/22/2007	126
10/24/2007	14.9	10/24/2007	122
3/19/2008	14.8	3/19/2008	118
6/3/2008	18.7	6/3/2008	125
8/4/2008	17.3	8/4/2008	121
11/5/2008	15.6	11/5/2008	162
2/3/2009	15.3	2/3/2009	113
5/13/2009	15.1	5/13/2009	122
8/24/2009	20.9	8/24/2009	118
10/14/2009	15.0	10/14/2009	129
1/20/2010	15.4	1/20/2010	106
2/9/2010	16.1	2/9/2010	127
4/27/2010	15.8	4/27/2010	97
5/24/2010	17.0	9/14/2010	111
6/15/2010	15.3	11/9/2010	126
8/24/2010	16.0	2/1/2011	134
9/14/2010	15.0	4/11/2011	134
10/19/2010	15.0	5/10/2011	128
11/9/2010	15.0	6/20/2011	127
12/14/2010	16.0	7/5/2011	127
1/10/2011	15.0	8/3/2011	126
2/1/2011	16.0	9/7/2011	145
3/14/2011	17.0	10/4/2011	129
4/11/2011	16.0	11/8/2011	122
5/10/2011	16.0	12/12/2011	124
6/20/2011	17.0	1/24/2012	124
7/5/2011	17.0	2/14/2012	126
8/3/2011	14.0	3/14/2012	128
9/7/2011	16.0	4/10/2012	128
10/4/2011	16.0	5/2/2012	124
11/8/2011	16.0	6/18/2012	131
12/12/2011	16.0	7/10/2012	128
1/24/2012	17.0	8/7/2012	139
2/14/2012	17.0	9/19/2012	130

1W-30 Date	Nitrata (ma/l)	Data	Chlorida (ma/l)
	Nitrate (mg/l)	Date	Chloride (mg/l) 135
3/14/2012	18.0	10/23/2012	
4/10/2012	17.0	11/13/2012	114
5/2/2012	16.0	12/26/2012	122
6/18/2012	15.0	1/23/2013	128
7/10/2012	17.0	2/26/2013	129
8/7/2012	18.0	3/20/2013	126
9/19/2012	16.0	4/17/2013	117
10/23/2012	16.2	5/15/2013	119
11/13/2012	18.5	6/25/2013	127
12/26/2012	17.2	7/10/2013	130
1/23/2013	19.2	8/20/2013	126
2/26/2013	21.4	9/18/2013	131
3/20/2013	14.3	10/22/2013	128
4/17/2013	16.8	11/20/2013	124
5/15/2013	18.8	12/18/2013	134
6/25/2013	16.1	1/8/2014	131
7/10/2013	17.6	2/25/2014	135
8/20/2013	16.4	3/11/2014	144
9/18/2013	16.9	4/23/2014	154
10/22/2013	19.7	5/14/2014	128
11/20/2013	19.5	6/3/2014	128
12/18/2013	20.7	7/29/2014	140
1/8/2014	20.3	8/20/2014	139
2/25/2014	18.4	9/9/2014	136
3/11/2014	21.3	10/7/2014	136
4/23/2014	18.3	11/10/2014	154
5/14/2014	17.9	12/10/2014	138
6/3/2014	19.4	1/21/2015	144
7/29/2014	15.6	2/4/2015	136
8/20/2014	13.8	3/3/2015	132
9/9/2014	16.8	4/8/2015	142
10/7/2014	11.0	5/12/2015	145
11/10/2014	16.2	6/24/2015	142
12/10/2014	17.1	7/7/2015	145
1/21/2015	19.5	8/11/2015	165
2/4/2015	14.9	9/15/2015	165
3/3/2015	17.3	10/7/2015	137
4/8/2015	17.0	11/11/2015	140
5/12/2015	16.1	12/9/2015	144
6/24/2015	15.8	1/20/2016	143
7/7/2015	15.3	2/10/2016	145
8/11/2015	17.9	3/2/2016	142

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
9/15/2015	17.3	4/13/2016	144
10/7/2015	19.1	5/4/2016	139
11/11/2015	16.3	6/14/2016	142
12/9/2015	18.2	7/13/2016	137
1/20/2016	14.6	8/18/2016	150
2/10/2016	20.0	9/14/2016	146
3/2/2016	17.8	10/5/2016	148
4/13/2016	18.0	11/3/2016	143
5/4/2016	17.3	12/6/2016	158
6/14/2016	18.5	1/18/2017	150
7/13/2016	16.1	2/2/2017	150
8/18/2016	18.0	3/6/2017	250
9/14/2016	17.0	4/5/2017	146
10/5/2016	17.2	5/2/2017	146
11/3/2016	18.0	6/5/2017	153
12/6/2016	18.2	7/11/2017	160
1/18/2017	19.0	8/14/2017	173
2/2/2017	17.4	9/12/2017	149
3/6/2017	20.4	10/5/2017	153
4/5/2017	18.3	11/1/2017	156
5/2/2017	17.5	12/6/2017	159
6/5/2017	18.8	1/23/2018	152
7/11/2017	16.2	2/22/2018	158
8/14/2017	19.2	3/8/2018	167
9/12/2017	18.7	4/12/2018	145
10/5/2017	18.8	5/15/2018	174
11/1/2017	17.4	6/19/2018	169
12/6/2017	18.3	7/24/2018	177
1/23/2018	15.2	8/10/2018	170
2/22/2018	17.6	9/11/2018	183
3/8/2018	17.0	10/22/2018	140
4/12/2018	17.3	11/14/2018	166
5/15/2018	17.7	12/11/2018	154
6/19/2018	16.9	1/16/2019	157
7/24/2018	17.4	2/13/2019	167
8/10/2018	18.7	3/6/2019	160
9/11/2018	18.0	4/9/2019	138
10/22/2018	17.3	5/7/2019	175
11/14/2018	16.9	6/3/2019	165
12/11/2018	17.2	7/16/2019	181
1/16/2019	17.9	8/6/2019	190
2/13/2019	18.2	9/24/2019	176

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
3/6/2019	16.2	10/8/2019	170
4/9/2019	18.5	11/13/2019	180
5/7/2019	17.9	12/4/2019	185
6/3/2019	15.8	1/15/2020	182
7/16/2019	19.3	2/5/2020	187
8/6/2019	15.8	3/11/2020	182
9/24/2019	17.9	4/6/2020	195
10/8/2019	18.2	5/6/2020	177
11/13/2019	17.2	6/3/2020	180
12/4/2019	17.8	7/6/2020	185
1/15/2020	16.4	8/11/2020	183
2/5/2020	17.8	9/1/2020	166
3/11/2020	19.0	10/13/2020	183
4/6/2020	18.1	11/17/2020	150
5/6/2020	18.6	12/8/2020	166
6/3/2020	18.3	1/11/2021	184
7/6/2020	18.4	2/10/2021	189
8/11/2020	21.1	3/9/2021	192
9/1/2020	18.3	4/14/2021	162
10/13/2020	16.8	5/11/2021	188
11/17/2020	13.4	6/8/2021	170
12/8/2020	12.0		
1/11/2021	17.7		
2/10/2021	14.3		
3/9/2021	17.0		
4/14/2021	17.7		
5/11/2021	18.6		
6/8/2021	17.0		

Under the groundwater sampling program, accelerated monitoring for nitrate began in MW-30 prior to when the accelerated monitoring for chloride began. This difference accounts for the different number of data points represented above.

MW-31			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/22/2005	24.2	6/22/2005	139
9/22/2005	22.4	9/22/2005	136
12/14/2005	23.8	12/14/2005	135
3/22/2006	24.1	3/22/2006	133
6/21/2006	25.3	6/21/2006	138
9/13/2006	24.6	9/13/2006	131
10/25/2006	25.1	10/25/2006	127
3/15/2007	23.2	3/15/2007	132
3/15/2007	22.0	3/15/2007	132
8/27/2007	23.3	8/27/2007	136
10/24/2007	24.6	10/24/2007	122
3/19/2008	25.0	3/19/2008	124
6/3/2008	29.3	6/3/2008	128
8/4/2008	28.7	8/4/2008	124
11/11/2008	29.9	11/11/2008	119
2/3/2009	23.4	2/3/2009	115
5/13/2009	22.4	5/13/2009	124
8/24/2009	15.4	8/24/2009	122
10/14/2009	22.6	10/14/2009	138
2/9/2010	21.7	2/9/2010	128
4/20/2010	22.5	4/20/2010	128
5/21/2010	23.0	9/13/2010	139
6/15/2010	21.1	11/9/2010	138
8/24/2010	22.0	2/1/2011	145
9/13/2010	21.0	4/1/2011	143
10/19/2010	20.0	5/10/2011	143
11/9/2010	20.0	6/20/2011	145
12/14/2010	20.0	7/5/2011	148
1/10/2011	19.0	8/2/2011	148
2/1/2011	21.0	9/6/2011	148
3/14/2011	22.0	10/3/2011	145
4/1/2011	21.0	11/8/2011	145
5/10/2011	20.0	12/12/2011	148
6/20/2011	22.0	1/24/2012	155
7/5/2011	22.0	2/13/2012	150
8/2/2011	20.0	3/13/2012	152
9/6/2011	21.0	4/9/2012	160
10/2/2011	24.0	E 12 12042	4 - 4

10/3/2011

11/8/2011

12/12/2011

1/24/2012

2/13/2012

21.0

21.0

21.0

21.0

21.0

5/2/2012

6/18/2012

7/9/2012

8/6/2012

9/18/2012

151

138

161

175

172

MW-31			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
3/13/2012	22.0	10/22/2012	157
4/9/2012	21.0	11/6/2012	189
5/2/2012	20.0	12/18/2012	170
6/18/2012	21.6	1/22/2013	176
7/9/2012	21.0	2/19/2013	174
8/6/2012	21.0	3/19/2013	168
9/18/2012	21.0	4/16/2013	171
10/22/2012	18.0	5/13/2013	169
11/6/2012	23.6	6/24/2013	179
12/18/2012	22.2	7/9/2013	182
1/22/2013	22.8	8/19/2013	183
2/19/2013	19.3	9/17/2013	193
3/19/2013	19.1	10/23/2013	188
4/16/2013	18.8	11/18/2013	174
5/13/2013	23.8	12/17/2013	203
6/24/2013	20.0	1/7/2014	194
7/9/2013	21.7	2/17/2014	197
8/19/2013	16.0	3/10/2014	230
9/17/2013	21.2	4/28/2014	230
10/23/2013	21.2	5/13/2014	200
11/18/2013	23.9	6/2/2014	173
12/17/2013	24.2	7/28/2014	200
1/7/2014	24.0	8/18/2014	210
2/17/2014	20.6	9/3/2014	210
3/10/2014	26.2	10/6/2014	205
4/28/2014	19.1	11/4/2014	204
5/13/2014	23.3	12/9/2014	215
6/2/2014	23.1	1/20/2015	226
7/28/2014	19.0	2/2/2015	211
8/18/2014	15.2	3/3/2015	209
9/3/2014	18.9	4/7/2015	211
10/6/2014	15.9	5/11/2015	225
11/4/2014	20.9	6/23/2015	228
12/9/2014	17.0	7/6/2015	222
1/20/2015	20.9	8/10/2015	264
2/2/2015	18.7	9/15/2015	231
3/3/2015	19.8	10/6/2015	222
4/7/2015	19.0	11/9/2015	215
5/11/2015	18.4	12/8/2015	231

1/19/2016

2/15/2016

3/2/2016

228

246

228

18.0

18.8

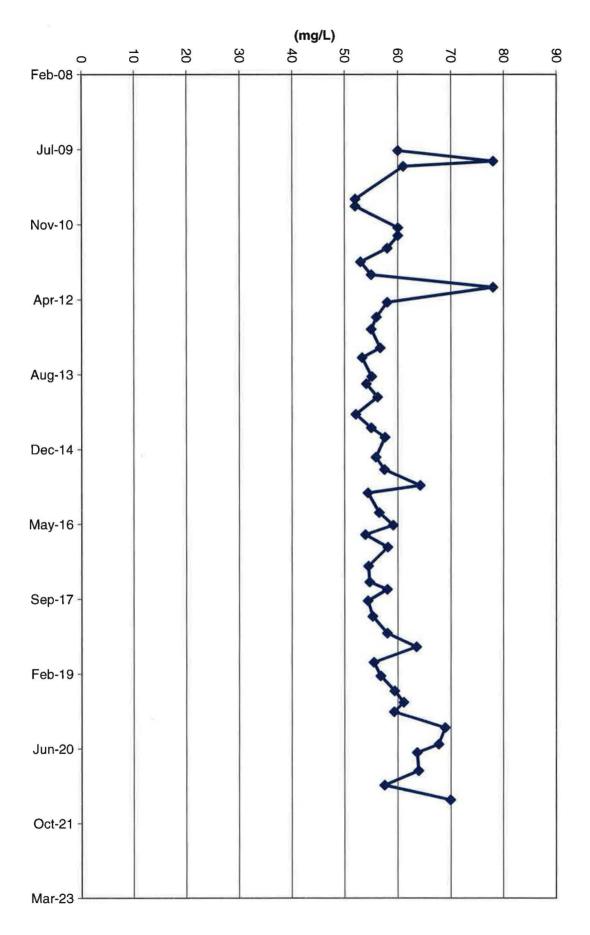
19.9

6/23/2015

7/6/2015

8/10/2015

R	4	١	A	,	1	1
ı١	/	١	Λ	1-	-3	1

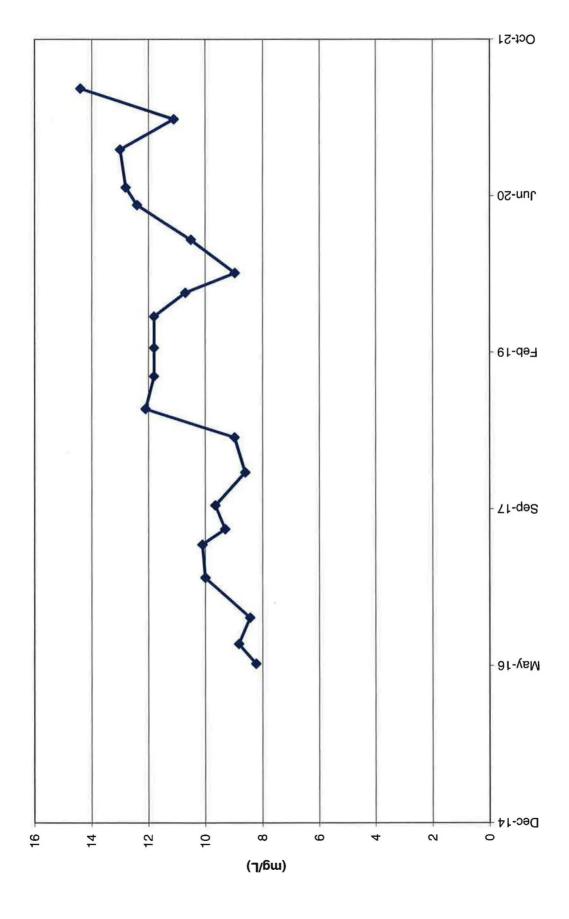

MW-31				
Date	Nitrate (mg/l)	Date	Chloride (mg/l)	
9/15/2015	18.9	4/12/2016	254	
10/6/2015	22.0	5/3/2016	243	
11/9/2015	18.4	6/15/2016	252	2
12/8/2015	19.5	7/12/2016	241	
1/19/2016	18.9	8/16/2016	272	
2/15/2016	18.8	9/13/2016	254	
3/2/2016	18.0	10/4/2016	260	
4/12/2016	22.8	11/1/2016	267	
5/3/2016	18.6	12/5/2016	274	
6/15/2016	19.2	1/17/2017	287	
7/12/2016	17.4	2/7/2017	266	
8/16/2016	19.7	3/6/2017	250	
9/13/2016	18.6	4/4/2017	263	
10/4/2016	18.8	5/1/2017	263	
11/1/2016	19.8	6/5/2017	278	
12/5/2016	18.5	7/11/2017	254	
1/17/2017	20.9	8/14/2017	310	
2/7/2017	21.1	9/11/2017	248	
3/6/2017	20.4	10/2/2017	287	
4/4/2017	19.5	11/1/2017	292	
5/1/2017	18.3	12/4/2017	285	
6/5/2017	20.8	1/24/2018	323	
7/11/2017	18.0	2/20/2018	292	
8/14/2017	19.5	3/5/2018	311	
9/11/2017	20.2	4/17/2018	308	
10/2/2017	21.0	5/14/2018	326	
11/1/2017	19.2	6/18/2018	359	
12/4/2017	19.2	7/23/2018	351	
1/24/2018	17.0	8/10/2018	336	
2/20/2018	18.8	9/10/2018	333	
3/5/2018	19.0	10/24/2018	286	
4/17/2018	19.0	11/13/2018	281	
5/14/2018	18.8	12/10/2018	302	
6/18/2018	18.0	1/15/2019	283	
7/23/2018	18.0	2/12/2019	296	
8/10/2018	18.3	3/5/2019	322	
9/10/2018	20.1	4/10/2019	294	
10/24/2018	18.3	5/7/2019	346	
11/13/2018	17.9	6/3/2019	325	
12/10/2018	18.3	7/15/2019	374	
1/15/2019	19.0	8/5/2019	372	
2/12/2019	18.6	9/23/2019	365	

MW-31			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
3/5/2019	18.5	10/9/2019	318
4/10/2019	19.7	11/12/2019	338
5/7/2019	18.9	12/3/2019	343
6/3/2019	19.7	1/14/2020	381
7/15/2019	19.8	2/4/2020	370
8/5/2019	17.0	3/10/2020	368
9/23/2019	19.5	4/6/2020	376
10/9/2019	19.8	5/5/2020	361
11/12/2019	18.8	6/2/2020	377
12/3/2019	18.3	7/7/2020	370
1/14/2020	17.5	8/10/2020	368
2/4/2020	18.0	9/1/2020	367
3/10/2020	19.2	10/19/2020	345
4/6/2020	18.8	11/16/2020	251
5/5/2020	20.1	12/7/2020	311
6/2/2020	18.7	1/12/2021	354
7/7/2020	19.2	2/9/2021	380
8/10/2020	21.6	3/8/2021	388
9/1/2020	18.4	4/13/2021	377
10/19/2020	18.6	5/10/2021	384
11/16/2020	16.5	6/7/2021	374
12/7/2020	18.8		
1/12/2021	17.1		
2/9/2021	14.3		
3/8/2021	17.4		
4/13/2021	18.6		
5/10/2021	18.9		
6/7/2021	20.6		

Under the groundwater sampling progran, accelerated monitoring for nitrate began in MW-31 prior to when the accelerated monitoring for chloride began. This difference accounts for the different number of data points represented above.

$\label{eq:Tab-K} \mbox{Tab K}$ Concentration Trend Graphs

Mar-23 Oct-21 - 0Տ-пու Feb-19 Piezometer 1 Nitrate Concentrations Sep-17 May-16 Dec-14 - €1-guA -St-1qA 01-voM - 60-lnr o ── 80-də∃ 9 2 8 6 7 9 4 ന 2 (mg/r)



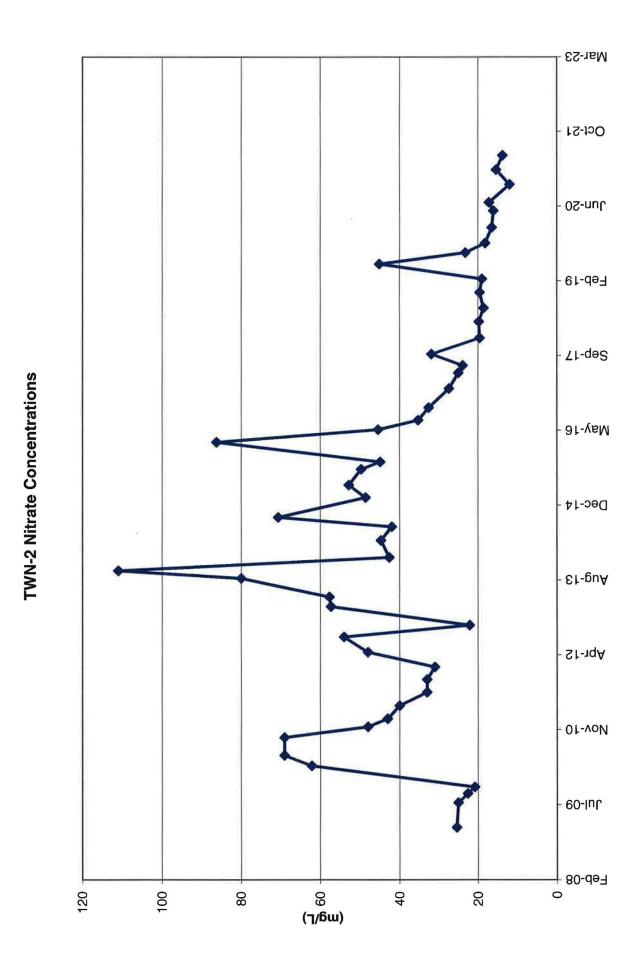
Mar-23 Oct-21 - ՕՏ-սու -61-d9-1 - Tr-qəS May-16 -Dec-14-- &t-guA Apr-12 - OT-VOM - 60-IոՐ Feb-08 [∔] (mg/L) 0.500 0.400 0.800 0.700 0.600 0.200 0.100 0.000 0.900 0.300

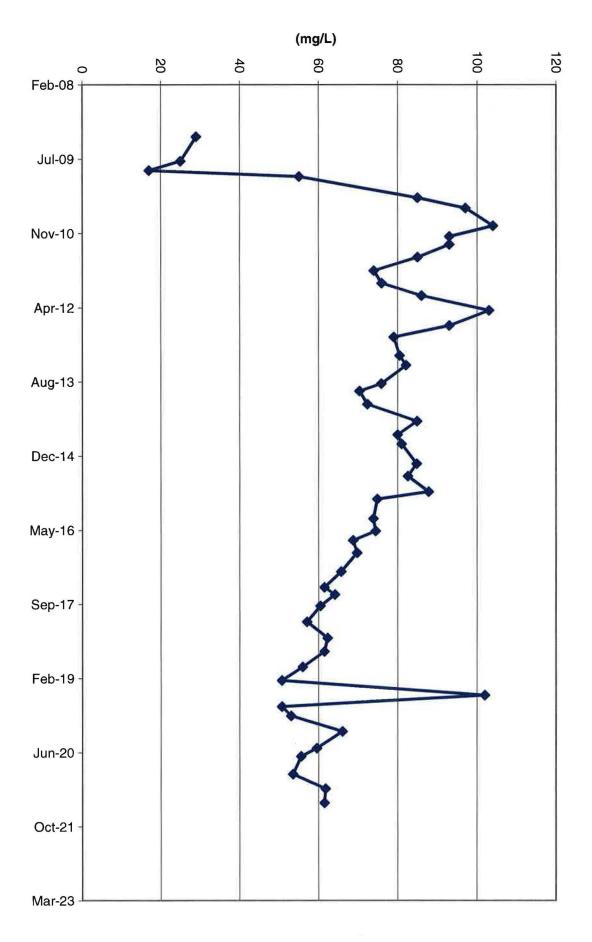
Piezometer 2 Nitrate Concentrations

Mar-23 Oct-21 -- 0S-nuc Feb-19 - 71-qəS May-16 Dec-14 - દ1-guA -St-1qA O1-VON 60-Inc 0. Feb-08 4.0 18.0 16.0 14.0 12.0 0.9

Piezometer 2 Chloride Concentrations

- 0S-nuc Piezometer 3A Chloride Concentrations Feb-19 - 71-qəS May-16 Dec-14 120 90 40 20 0 140 8 9


(mg/L)


Oct-21

TWN-1 Nitrate Concentrations

Mar-23 Oct-21 - 02-unc Feb-19 Sep-17 May-16 Dec-14 - €t-guA -St-1qA Ot-voM - 60-lnr o ⊢80-d∍∃ 30 9 2 4 32 25 20 15 (mg/ך)

TWN-1 Chloride Concentrations

TWN-3 Nitrate Concentrations

Mar-23 Oct-21 - 0Ճ-սու Feb-19 Sep-17 May-16 -Dec-14 -£r-guA -St-1qA - OT-voM 60-Inc Feb-08 (J\gm) 200 4 20 180 160 140 120 8 9

TWN-3 Chloride Concentrations

TWN-4 Nitrate Concentrations

Mar-23 Oct-21 - 0Տ-ոսև -61-də3 - 71-qəS May-16-Dec-14 -- Et-guA -St-1qA - Ot-voM - 60-Inc + 80-de∃ (m**ð**(۲) 35.0 25.0 10.0 2.0 0.0 30.0 15.0

TWN-4 Chloride Concentrations

Mar-23 Oct-21 - 02-սու Feb-19 Sep-17 May-16 Dec-14 - &t-guA St-1QA - Ot-voM 60-Inr Feb-08 [↑] %1/**gm)** ⊗ 18.00 16.00 14.00 12.00 00.9 4.00 2.00 0.00

TWN-7 Nitrate Concentrations

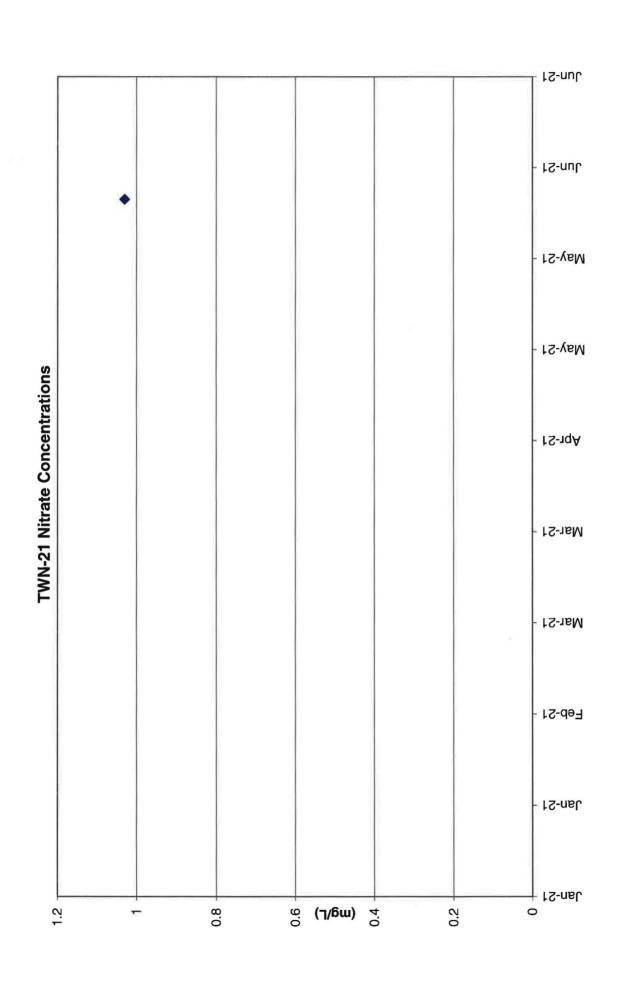
Mar-23 Oct-21 Jun-20 Feb-19 - Tr-qəS May-16 Dec-14 €1-guA Apr-12 Ot-voM - 60-IոՐ Feb-08 140.00 120.00 %(**J/gm)** % 100.00 0.00 40.00 20.00

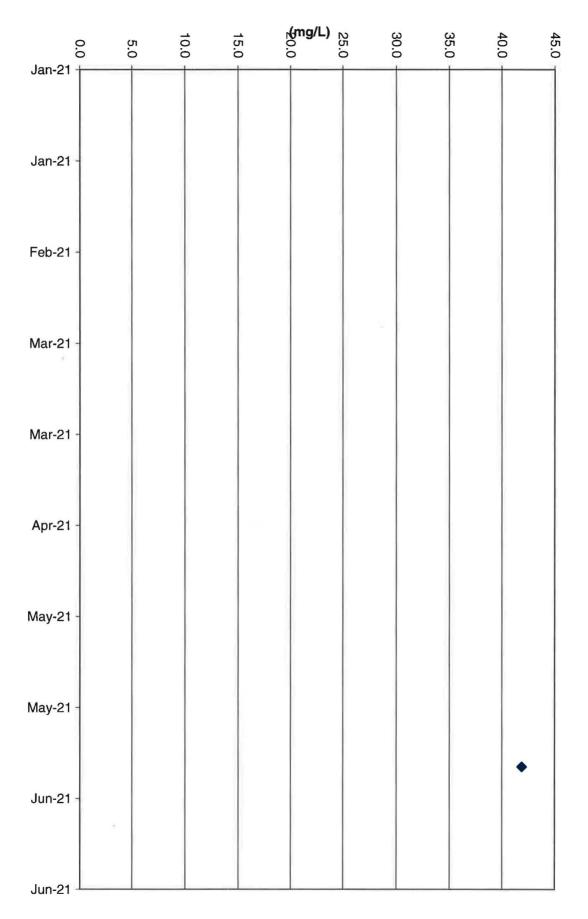
TWN-7 Chloride Concentrations

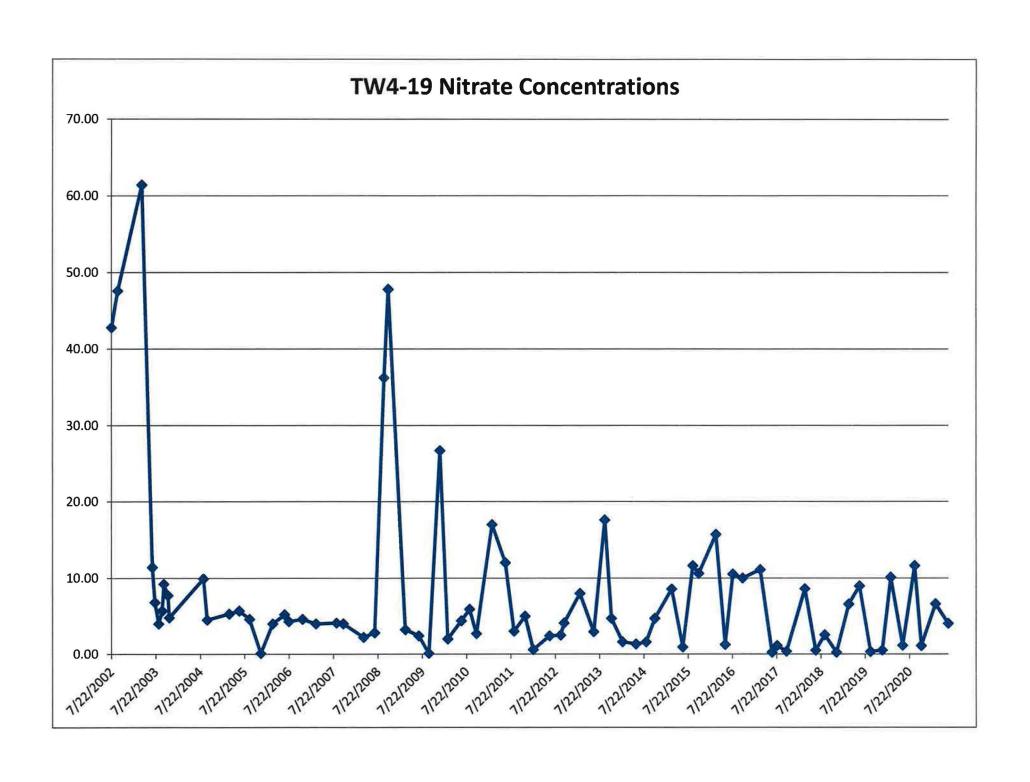
Mar-23 Oct-21 0Տ-ոսՆ Feb-19 Sep-17 May-16 Dec-14 - £t-guA - St-1qA Ot-voM 60-lnc Feb-08 [†] 2.500 2.000 1.500 1.000 0.500 0.000 (J/6m)

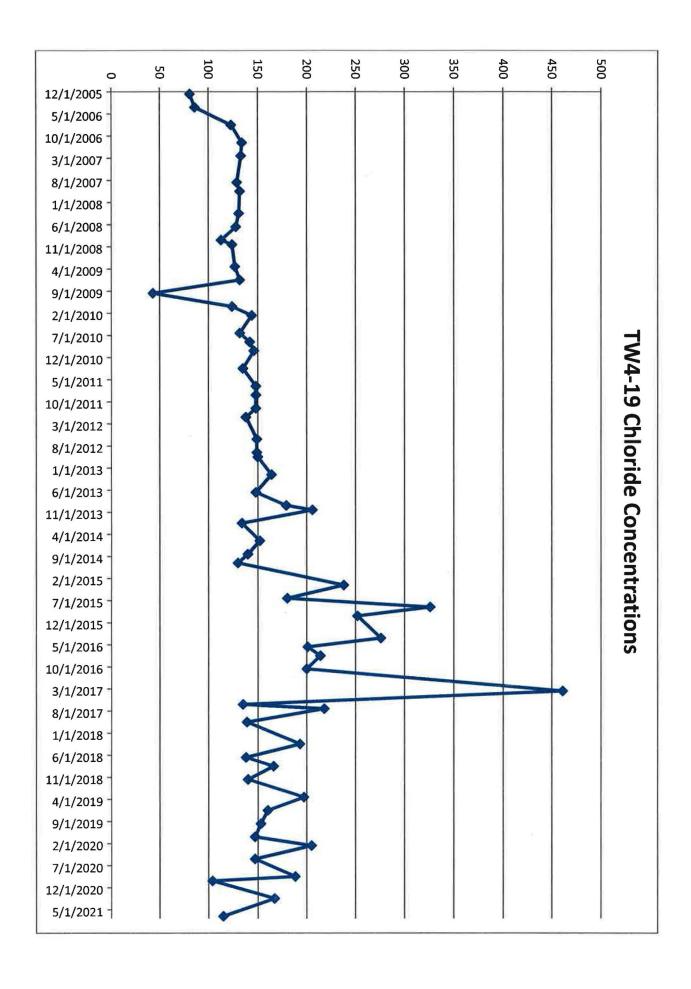
TWN-18 Nitrate Concentrations

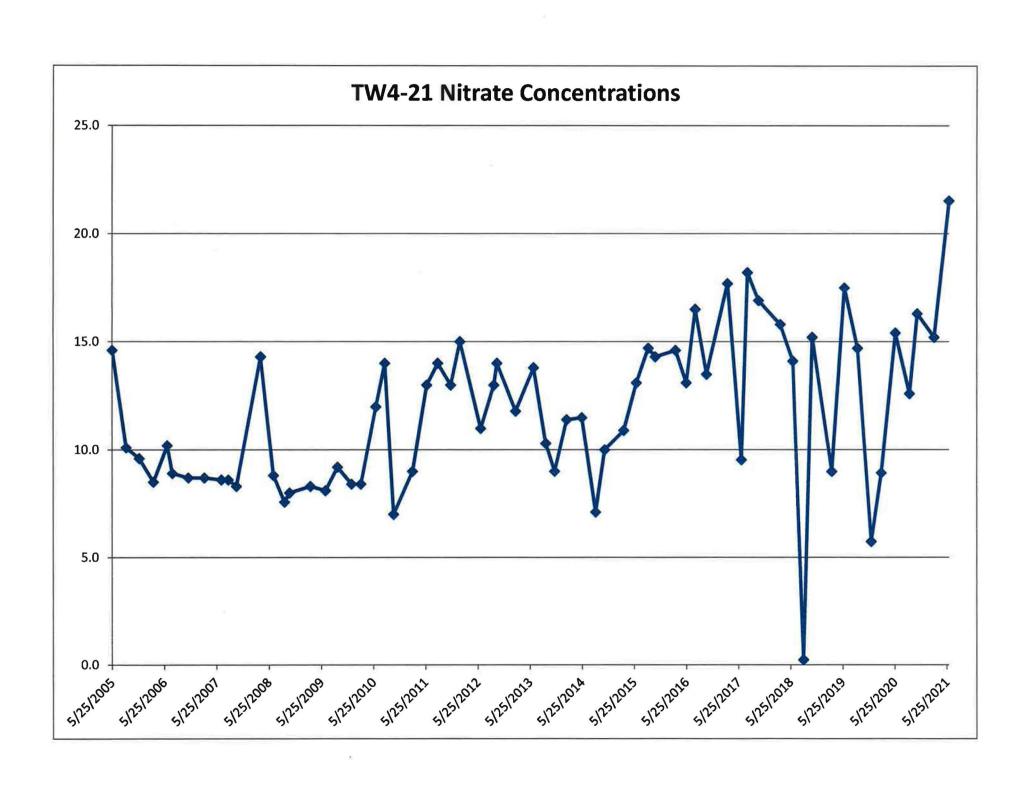
Mar-23 Oct-21 -- 0Տ-սու Feb-19 71-qa2 May-16 -Dec-14 €r-guA -St-1qA Or-voM - 60-Inr + 80-d∍∃ 90.0 70.0 0.09 30.0 20.0 10.0

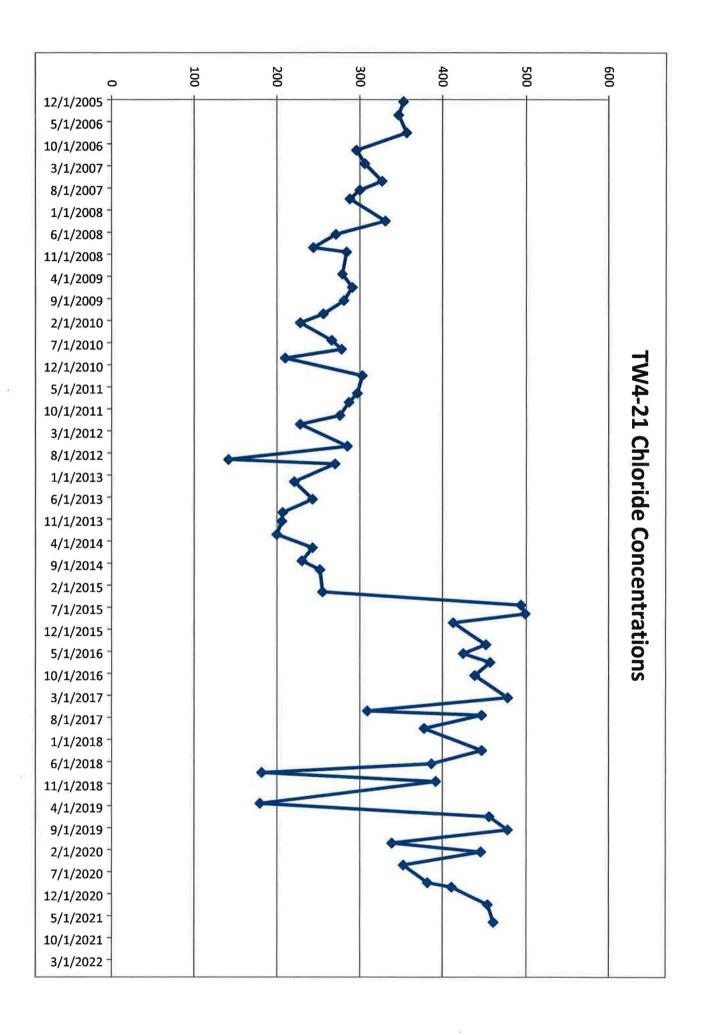

TWN-18 Chloride Concentrations

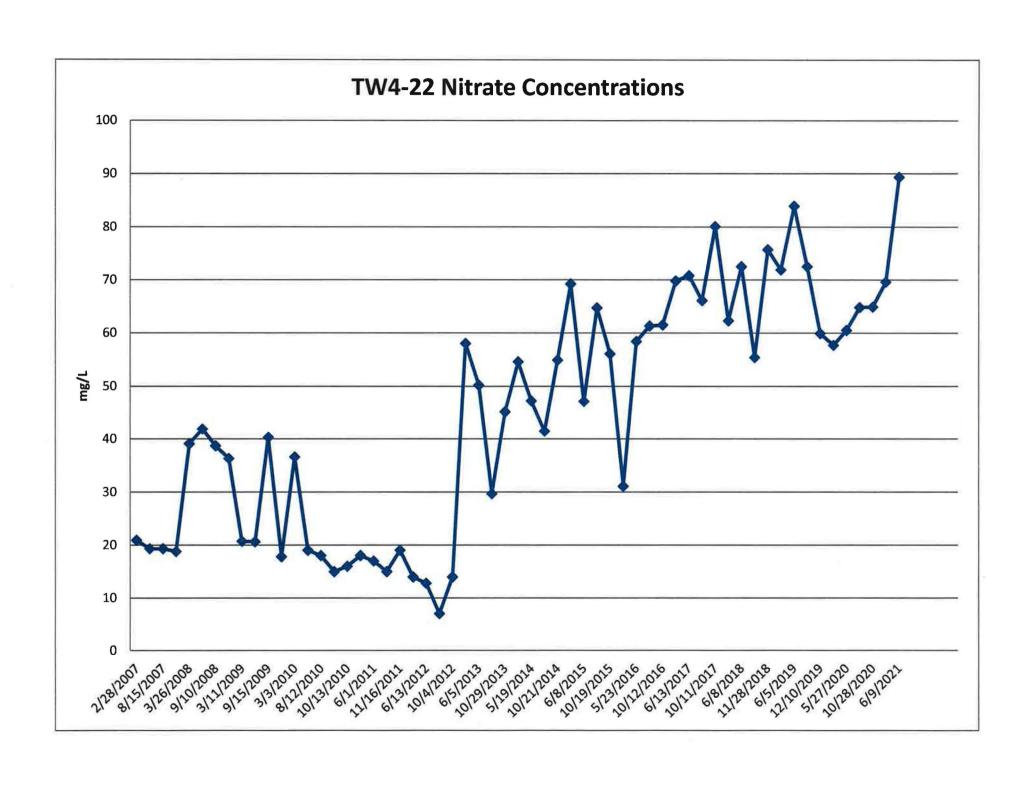

ԻՏ-ոսև

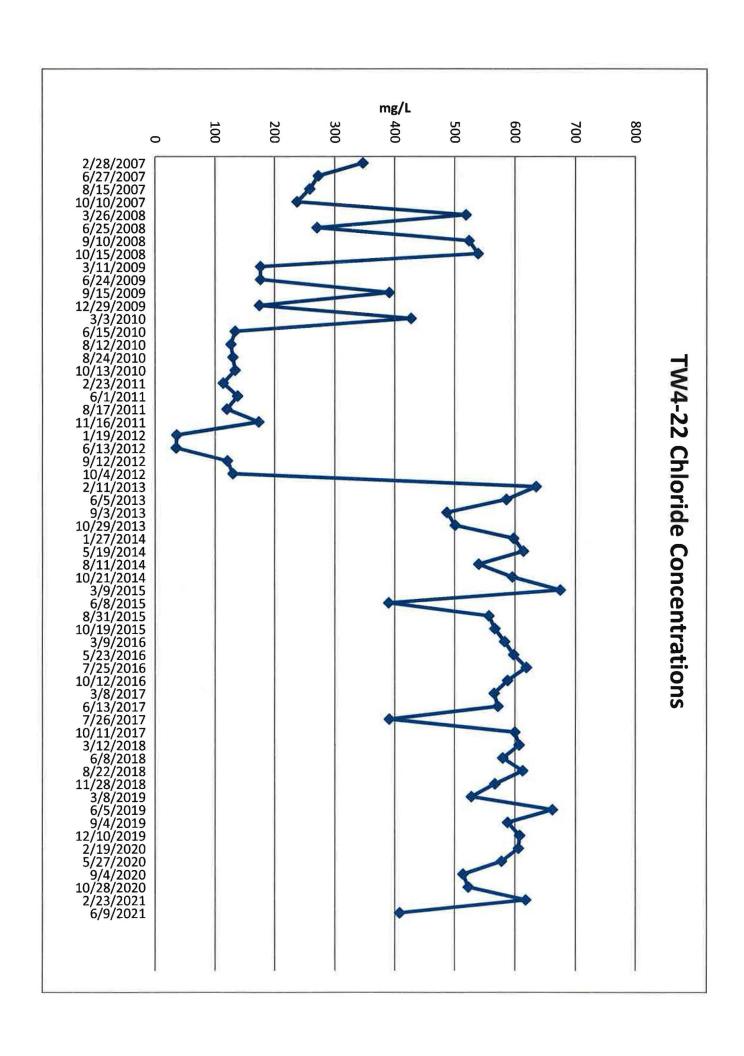

TWN-20 Nitrate Concentrations

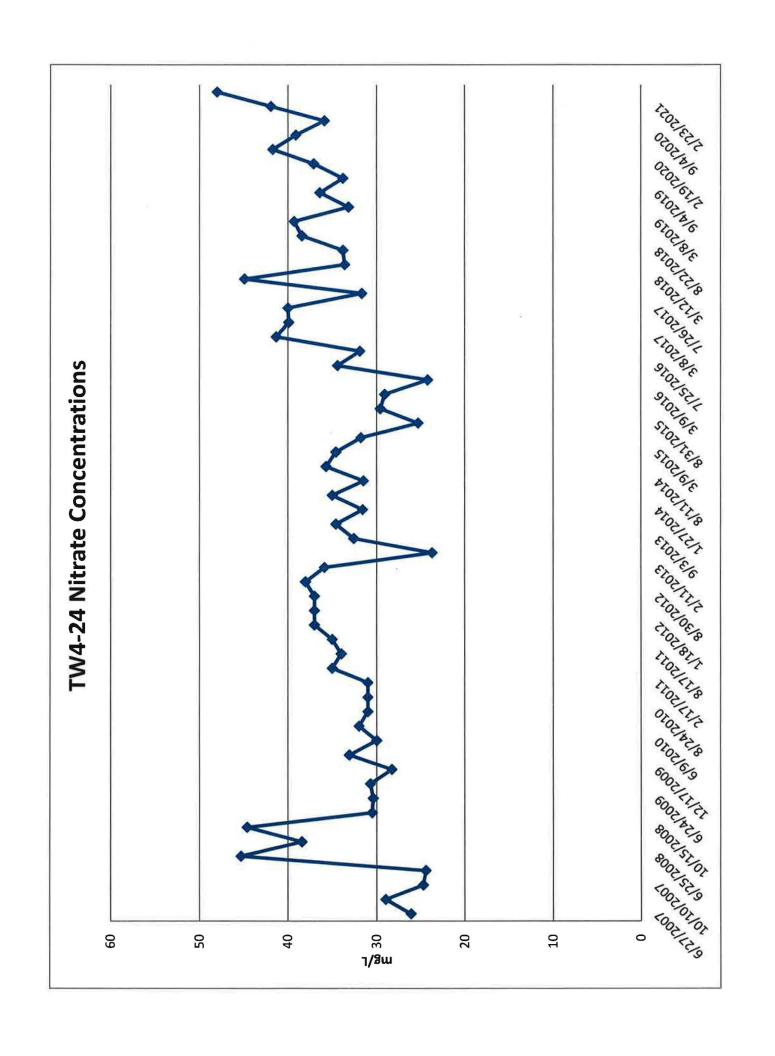

- ԻՏ-ոսև ի Մշ-սու May-21 May-21 - FS-1qA Mar-21 Mar-21 Feb-21 าสก-21 าสก-21 🕂 (1/6w) 0.09 40.0 10.0 20.0 20.0 0.0

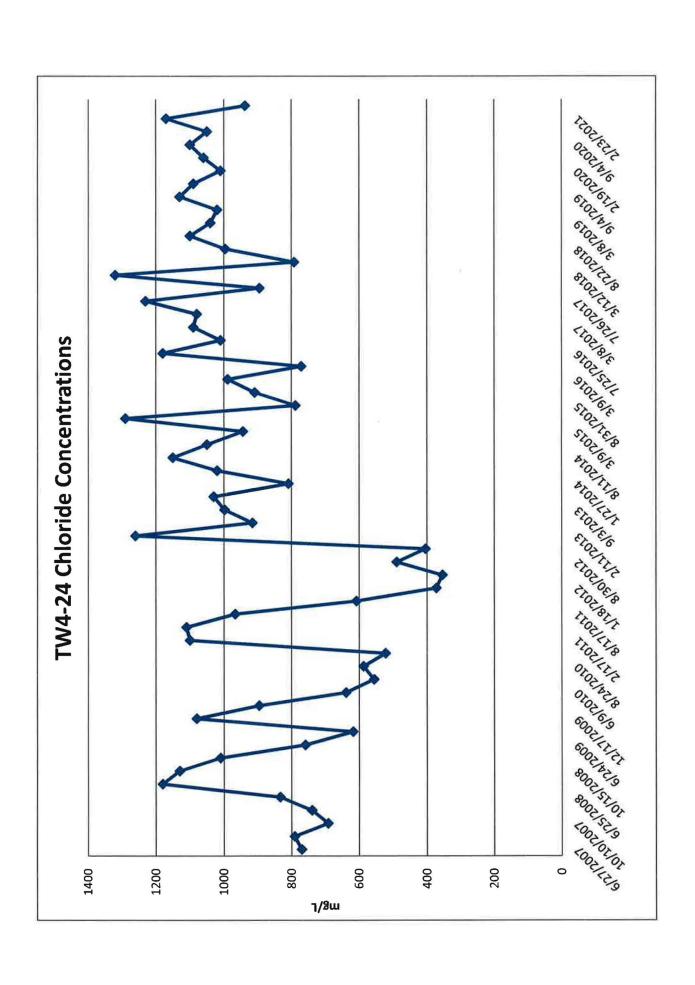

TWN-20 Chloride Concentrations

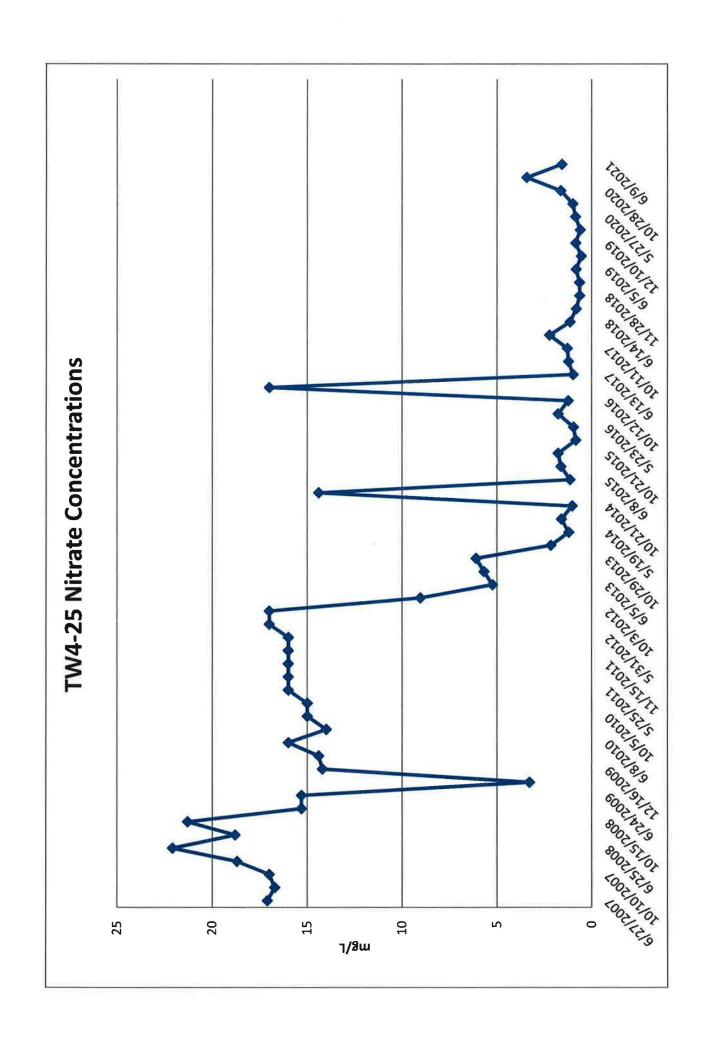


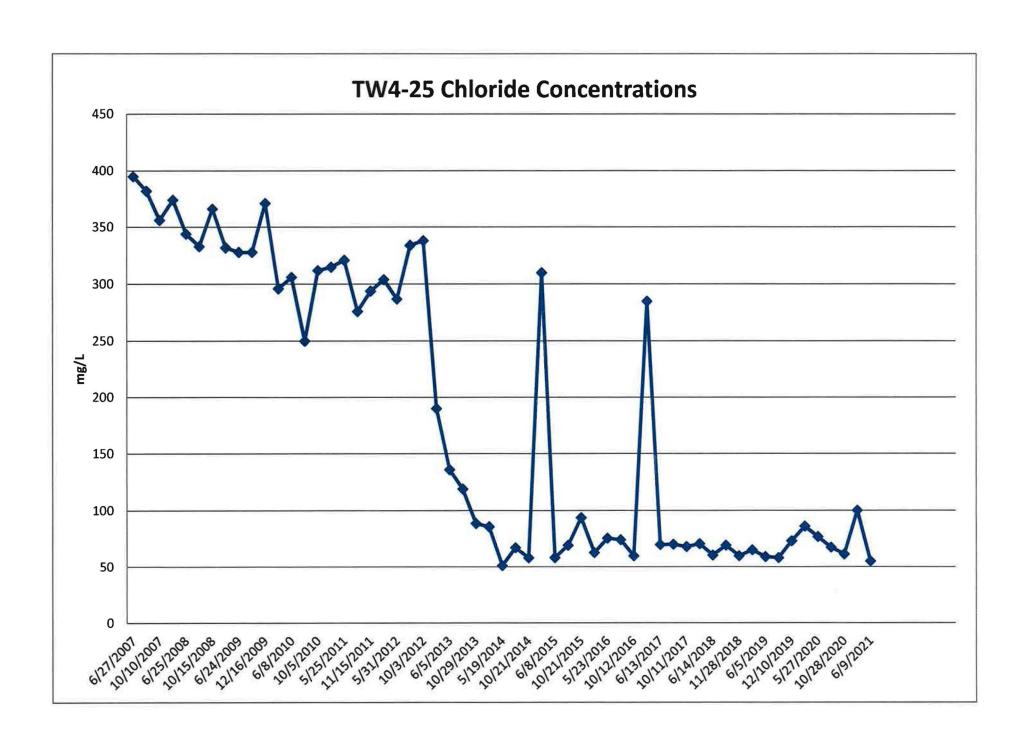


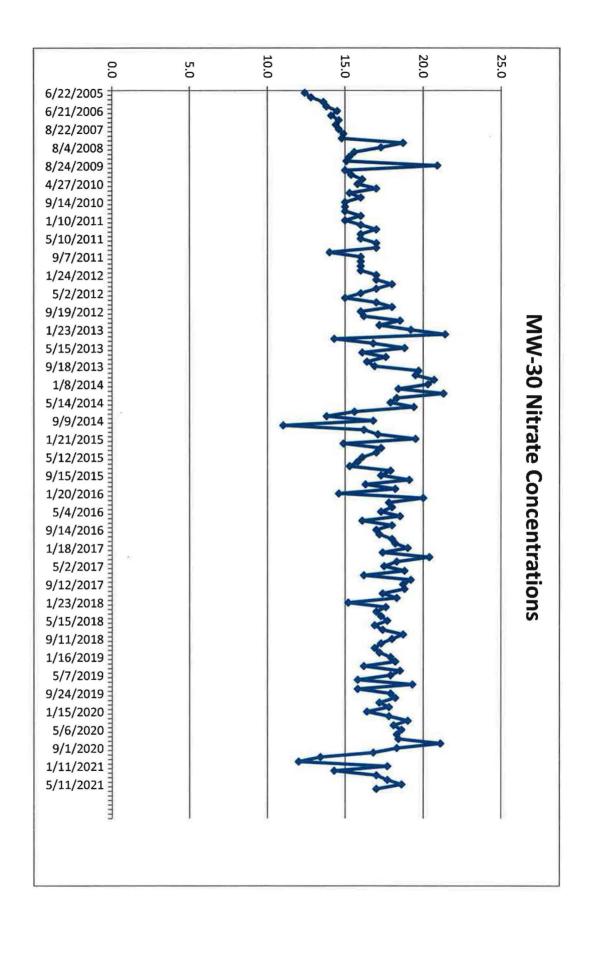


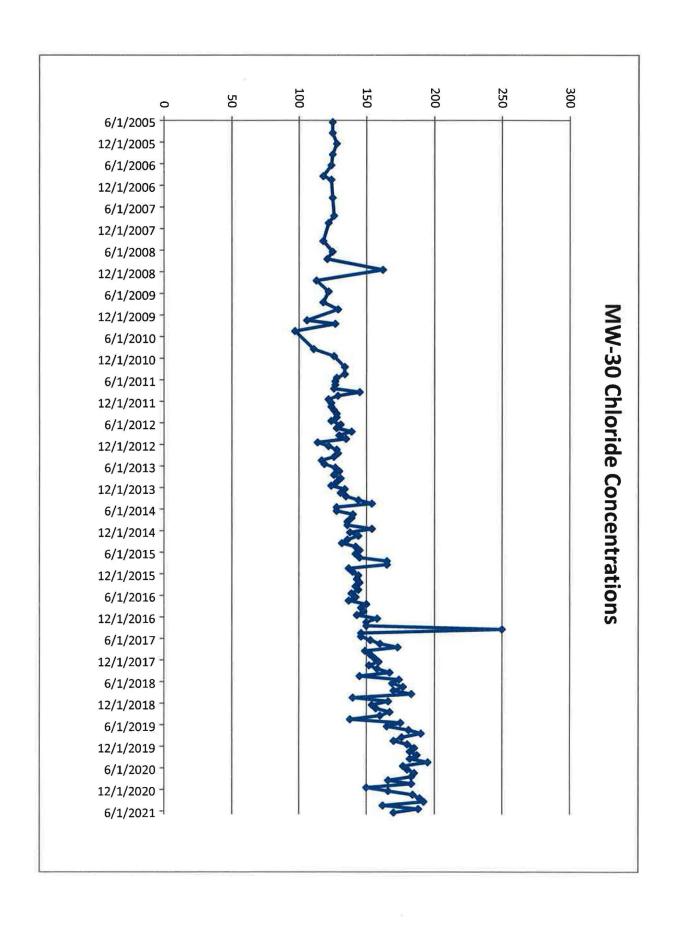


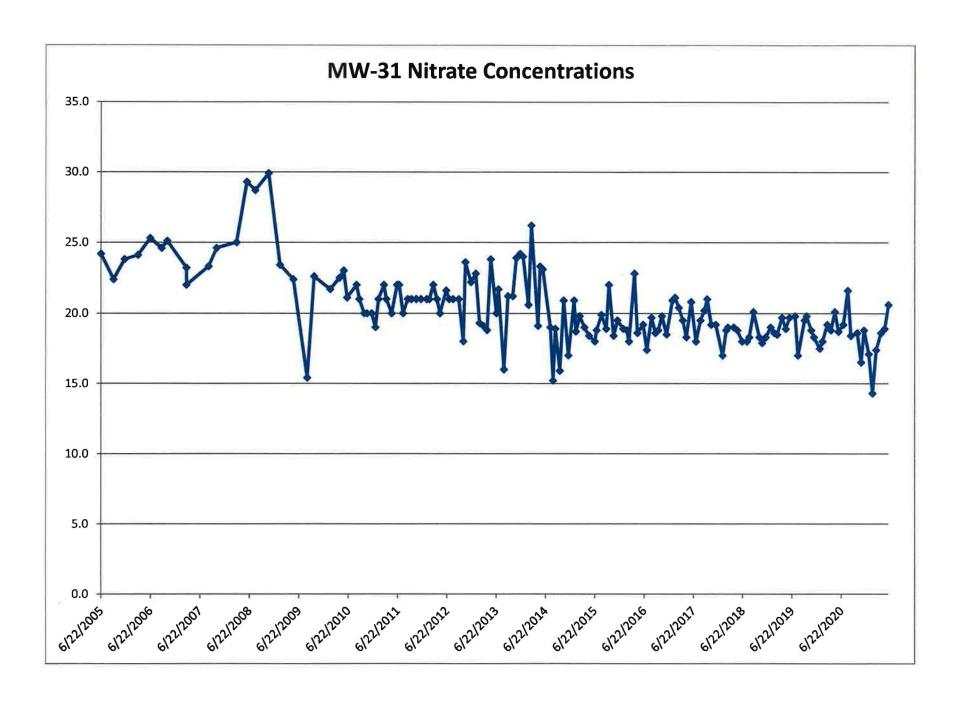


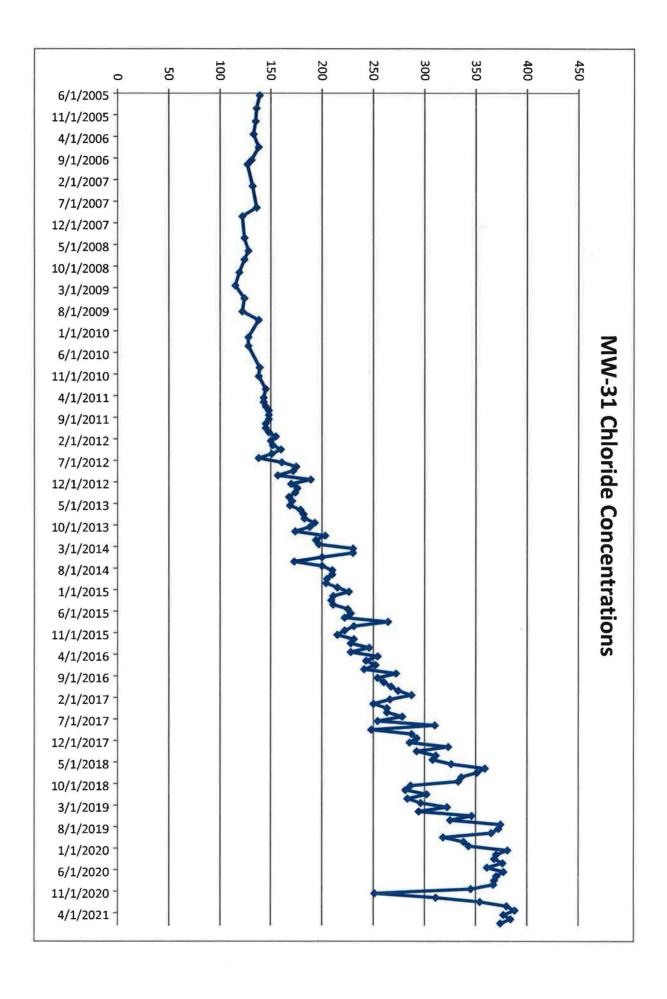












$\label{eq:local_continuity} Tab\ L$ CSV Transmittal Letter

Kathy Weinel

From:

Kathy Weinel

Sent:

Monday, August 2, 2021 8:44 AM

To:

Phillip Goble

Cc:

'Dean Henderson'; David Frydenlund; Scott Bakken; Logan Shumway; Terry Slade; Garrin

Palmer

Subject:

Transmittal of CSV Files White Mesa Mill 2021 Q2 Nitrate Monitoring

Attachments:

2106232-report-EDD.csv; Q2 2021 Nitrate Field Data.csv; Q2 2021 DTW all programs.csv

Mr. Goble,

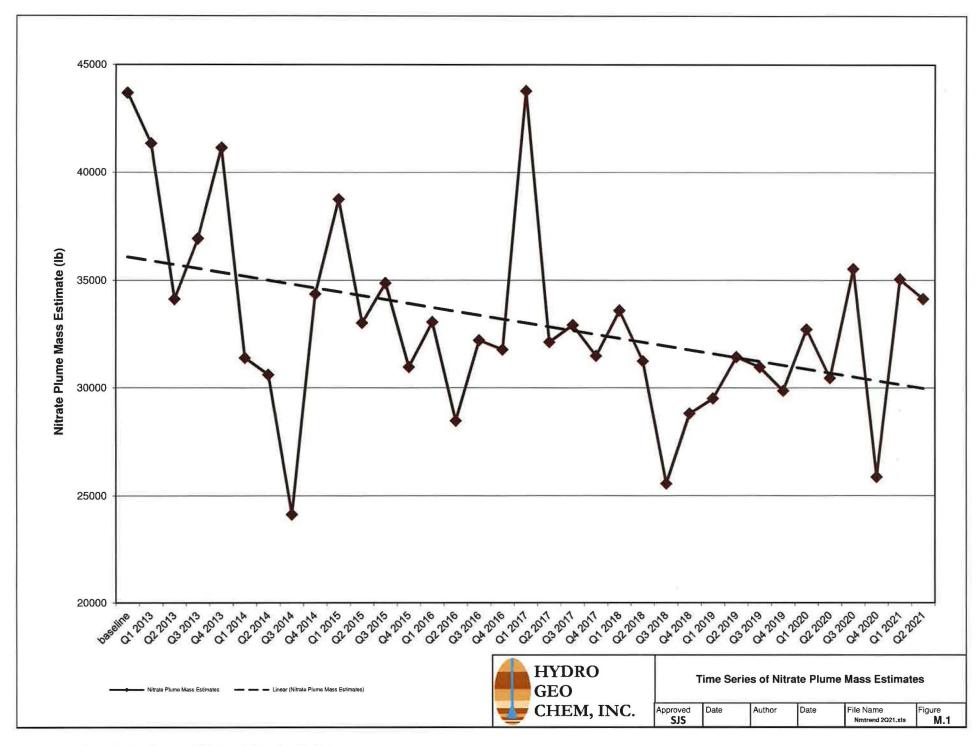
Attached to this e-mail is an electronic copy of laboratory results for nitrate monitoring conducted at the White Mesa Mill during the second quarter of 2021, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.

Yours Truly

Kathy Weinel

Kathy Weinel


Quality Assurance Manager

t: 303.389.4134 | f: 303.389.4125 225 Union Blvd., Suite 600 Lakewood, CO 80228

http://www.energyfuels.com

This e-mail is intended for the exclusive use of person(s) mentioned as the recipient(s). This message and any attached files with it are confidential and may contain privileged or proprietary information. If you are not the intended recipient(s) please delete this message and notify the sender. You may not use, distribute print or copy this message if you are not the intended recipient(s).

Tab M Residual Mass Estimate Analysis Figure

Tab M - Tables

The Residual Mass Estimate Analysis Tables

Table M.1
Residual Nitrate Plume Mass

	residual
	plume
quarter	mass (lb)
baseline	43700
Q1 2013	41350
Q2 2013	34140
Q3 2013	36930
Q4 2013	41150
Q1 2014	31410
Q2 2014	30620
Q3 2014	24140
Q4 2014	34370
Q1 2015	38740
Q2 2015	33042
Q3 2015	34880
Q4 2015	30980
Q1 2016	33083
Q2 2016	28465
Q3 2016	32230
Q4 2016	31798
Q1 2017	43787
Q2 2017	32145
Q3 2017	32939
Q4 2017	31501
Q1 2018	33616
Q2 2018	31257
Q3 2018	25568
Q4 2018	28805
Q1 2019	29509
Q2 2019	31455
Q3 2019	30976
Q4 2019	29870
Q1 2020	32740
Q2 2020	30467
Q3 2020	35525
Q4 2020	25875
Q1 2021	35052
Q2 2021	34143

Notes:

lbs = pounds